Advancements in Federated Learning: Models, Methods, and

被引:3
|
作者
Chen, Huiming [1 ]
Wang, Huandong [1 ]
Long, Qingyue [1 ]
Jin, Depeng [1 ]
Li, Yong [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
关键词
Federated learning; architecture; communication efficiency; base models; distributed optimization; privacy and security; COMMUNICATION; PRIVACY; ACCELERATION; CONVERGENCE; COMPUTATION; SECURITY;
D O I
10.1145/3664650
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated learning (FL) is a promising technique for resolving the rising privacy and security concerns. Its main ingredient is to cooperatively learn the model among the distributed clients without uploading any sensitive data. In this article, we conducted a thorough review of the related works, following the development context and deeply mining the key technologies behind FL from the perspectives of theory and application. Specifically, we first classify the existing works in FL architecture based on the network topology of FL systems with detailed analysis and summarization. Next, we abstract the current application problems, summarize the general techniques, and frame the application problems into the general paradigm of FL base models. Moreover, we provide our proposed solutions for model training via FL. We have summarized and analyzed the existing FedOpt algorithms, and deeply revealed the algorithmic development principles of many first- order algorithms in depth, proposing a more generalized algorithm design framework. With the instantiation of these frameworks, FedOpt algorithms can be simply developed. As privacy and security are the fundamental requirements in FL, we provide the existing attack scenarios and the defense methods. To the best of our knowledge, we are among the first tier to review the theoretical methodology and propose our strategies since there are very few works surveying the theoretical approaches. Our survey targets motivating the development of high-performance, privacy-preserving, and secure methods to integrate FL into real-world applications.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Adaptive Expert Models for Federated Learning
    Isaksson, Martin
    Zec, Edvin Listo
    Coster, Rickard
    Gillblad, Daniel
    Girdzijauskas, Sarunas
    TRUSTWORTHY FEDERATED LEARNING, FL 2022, 2023, 13448 : 1 - 16
  • [32] Reuse of Client Models in Federated Learning
    Cao, Bokai
    Wu, Weigang
    Zhan, Congcong
    Zhou, Jieying
    2022 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2022), 2022, : 356 - 361
  • [33] Improving Fairness in AI Models on Electronic Health Records: The Case for Federated Learning Methods
    Poulain, Raphael
    Bin Tarek, Mirza Farhan
    Beheshti, Rahmatollah
    PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, 2023, : 1599 - 1608
  • [34] A comprehensive survey of federated transfer learning: challenges, methods and applications
    Guo, Wei
    Zhuang, Fuzhen
    Zhang, Xiao
    Tong, Yiqi
    Dong, Jin
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (06)
  • [35] Multimodal federated learning: Concept, methods, applications and future directions
    Huang, Wei
    Wang, Dexian
    Ouyang, Xiaocao
    Wan, Jihong
    Liu, Jia
    Li, Tianrui
    INFORMATION FUSION, 2024, 112
  • [36] Transformer-Based Federated Learning Models for Recommendation Systems
    Reddy, M. Sujaykumar
    Karnati, Hemanth
    Sundari, L. Mohana
    IEEE ACCESS, 2024, 12 : 109596 - 109607
  • [37] Federated Learning Models for Real-Time IoT: A Survey
    Houidi, Karim
    Said, Marwa
    Hakiri, Akram
    Mellouli-Nauwynck, Nedra
    Ben Ayed, Hella Kaffel
    2024 IEEE 27TH INTERNATIONAL SYMPOSIUM ON REAL-TIME DISTRIBUTED COMPUTING, ISORC 2024, 2024,
  • [38] A Review of Federated Learning in Agriculture
    Zalik, Krista Rizman
    Zalik, Mitja
    SENSORS, 2023, 23 (23)
  • [39] Accelerating Federated Edge Learning
    Nguyen, Tuan Dung
    Balef, Amir R.
    Dinh, Canh T.
    Tran, Nguyen H.
    Ngo, Duy T.
    Anh Le, Tuan
    Vo, Phuong L.
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3282 - 3286
  • [40] Federated Learning for Mobility Applications
    Gecer, Melike
    Garbinato, Benoit
    ACM COMPUTING SURVEYS, 2024, 56 (05)