Mask-Less Asynchronous Time-Delay Reservoir Computing Using a Passive Photonic Integrated Circuit

被引:0
作者
Abdalla, Mohab [1 ,2 ]
Cardoso, Raphael [1 ]
Jimenez, Paul [1 ]
de Queiroz, Mauricio Gomes [1 ]
Boes, Andreas [3 ]
Ren, Guanghui [2 ]
Mitchell, Arnan [2 ]
O'Connor, Ian [1 ]
Pavanello, Fabio [4 ]
机构
[1] Univ Lyon, Ecole Cent Lyon, Lyon Inst Nanotechnol, INSA Lyon,UCB Lyon,CPE Lyon,CNRS,UMR5270, F-69130 Ecully, France
[2] RMIT Univ, Integrated Photon & Applicat Ctr InPAC, Sch Engn, Melbourne, Vic 3000, Australia
[3] Univ Adelaide, Inst Photon & Adv Sensing IPAS, Adelaide, SA 5005, Australia
[4] Univ Grenoble Alpes, Univ Savoie Mont Blanc, CNRS, Grenoble INP,IMEP LAHC, F-38000 Grenoble, France
关键词
Integrated photonics; reservoir computing; PERFORMANCE;
D O I
10.1109/JLT.2024.3434538
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic time-delay reservoir computing schemes usually employ an input mask as a means of performance enhancement. However, input masking usually necessitates a domain conversion, requiring a signal to be treated before sending it to the reservoir. More recent implementations have explored further ways of performance enhancement, whether through operating in the asynchronous regime, or by using post-filtering approaches. In this numerical study, we analyze the task-independent performance of a passive integrated photonic reservoir, and show that it can achieve good results on some benchmark tasks in the absence of an input mask. We also consider the effects of post-filtering and operating in the asynchronous regime through a parameter space exploration. The proposed scheme enables ultra-fast processing speeds while simultaneously reducing the associated power and complexity costs of the associated electronics. We compare the obtained results with the case of using a mask, and also with other schemes from the literature, showing comparable performance on the investigated tasks.
引用
收藏
页码:8051 / 8060
页数:10
相关论文
共 40 条
[1]   Minimum complexity integrated photonic architecture for delay-based reservoir computing [J].
Abdalla, Mohab ;
Zrounba, Clement ;
Cardoso, Raphael ;
Jimenez, Paul ;
Ren, Guanghui ;
Boes, Andreas ;
Mitchell, Arnan ;
Bosio, Alberto ;
O'connor, Ian ;
Pavanello, Fabio .
OPTICS EXPRESS, 2023, 31 (07) :11610-11623
[2]  
[Anonymous], 2002, GMD Rep. 159
[3]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[4]  
Appeltant L., 2012, Ph.D. dessertation
[5]   Constructing optimized binary masks for reservoir computing with delay systems [J].
Appeltant, Lennert ;
Van der Sande, Guy ;
Danckaert, Jan ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2014, 4
[6]   Fast physical repetitive patterns generation for masking in time-delay reservoir computing [J].
Argyris, Apostolos ;
Schwind, Janek ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2021, 11 (01)
[7]   A Microring as a Reservoir Computing Node: Memory/Nonlinear Tasks and Effect of Input Non-Ideality [J].
Bazzanella, Davide ;
Biasi, Stefano ;
Mancinelli, Mattia ;
Pavesi, Lorenzo .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (17) :5917-5926
[8]   Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits [J].
Boes, Andreas ;
Corcoran, Bill ;
Chang, Lin ;
Bowers, John ;
Mitchell, Arnan .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[9]   Reconfigurable semiconductor laser networks based on diffractive coupling [J].
Brunner, Daniel ;
Fischer, Ingo .
OPTICS LETTERS, 2015, 40 (16) :3854-3857
[10]   Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth [J].
Buzaverov, Kirill A. ;
Baburin, Aleksandr S. ;
Sergeev, Evgeny V. ;
Avdeev, Sergey S. ;
Lotkov, Evgeniy S. ;
Andronik, Mihail ;
Stukalova, Victoria E. ;
Baklykov, Dmitry A. ;
Dyakonov, Ivan V. ;
Skryabin, Nikolay N. ;
Saygin, Mikhail Yu . ;
Kulik, Sergey P. ;
Ryzhikov, Ilya A. ;
Rodionov, Ilya A. .
OPTICS EXPRESS, 2023, 31 (10) :16227-16242