Qualitative and quantitative assessment of apple quality using bulk optical properties in combination with machine learning and chemometrics techniques

被引:0
|
作者
Tian, Kai [1 ]
Zhu, Weijie [1 ]
Wang, Minjie [1 ]
Chen, Ting [1 ]
Li, Fuqi [1 ]
Xie, Jianchao [1 ]
Peng, Yumeng [1 ]
Sun, Tong [1 ]
Zhou, Guoquan [1 ]
Hu, Dong [1 ]
机构
[1] Zhejiang A&F Univ, Coll Opt Mech & Elect Engn, Hangzhou 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
Bulk optical properties; Apple; Quality; Machine learning; Chemometrics; SCATTERING PROPERTIES; SOLUBLE SOLIDS; CLASSIFICATION; SPECTROSCOPY; ABSORPTION; PREDICTION; FIRMNESS; SYSTEM; FLESH;
D O I
10.1016/j.lwt.2024.116894
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This study aimed to understand the quantitative relationship between the bulk optical properties (BOP), soluble solids content (SSC), and fruit firmness (FF) of apples, along with the qualitative discrimination of apple cultivar and shelf-life. The absorption coefficient (mu a) and reduced scattering coefficient (mu s ') of 200 apples from four cultivars during 36-days shelf-life were determined using the single integrating sphere technique in 500-1000 nm. Partial least squares regression (PLSR) and random forest (RF) algorithms were used to establish quantitative prediction models for SSC and FF based on the BOP of apples. The results indicated that the PLSR models based on mu alpha and mu s ' were optimal for quantitative prediction of SSC (R2p = 0.749, RMSEP = 0.507) and FF (R2p = 0.745, RMSEP = 0.571), respectively. RF and linear discriminant analysis (LDA) were used to establish qualitative models for discriminating apple cultivar and shelf-life, demonstrating that the RF model based on mu alpha and mu alpha + mu s ' had the highest accuracy for the determination of apple cultivar and shelf-life, respectively, with the prediction set reaching 93.2 % and 85.7 %. Overall, RF was better than LDA for qualitative discrimination; however, it was less effective than PLSR for quantitative modeling.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A methodology for the classification of quality of requirements using machine learning techniques
    Parra, Eugenio
    Dimou, Christos
    Llorens, Juan
    Moreno, Valentin
    Fraga, Anabel
    INFORMATION AND SOFTWARE TECHNOLOGY, 2015, 67 : 180 - 195
  • [42] Improving Design Quality of Software Using Machine Learning Techniques
    Prabha, C. Lakshmi
    Shivakumar, N.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 583 - 588
  • [43] Predictive Modeling of Wine Quality using Machine Learning Techniques
    Bed, Mohit
    Gill, Kanwarpartap Singh
    Sharma, Neha
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1017 - 1022
  • [44] Assessment of coastal vulnerability using AHP and machine learning techniques
    Sethuraman, S.
    Alshahrani, Haya Mesfer
    Tamizhselvi, A.
    Sujaatha, A.
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2024, 147
  • [45] Assessment of wall convergence for tunnels using machine learning techniques
    Mahmoodzadeh, Arsalan
    Nejati, Hamid Reza
    Mohammadi, Mokhtar
    Ibrahim, Hawkar Hashim
    Mohammed, Adil Hussein
    Rashidi, Shima
    GEOMECHANICS AND ENGINEERING, 2022, 31 (03) : 265 - 279
  • [46] Prediction and Portfolio Optimization in Quantitative Trading Using Machine Learning Techniques
    Van-Dai Ta
    Liu, Chuan-Ming
    Addis, Direselign
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2018), 2018, : 98 - 105
  • [47] Nonparametric variable importance assessment using machine learning techniques
    Williamson, Brian D.
    Gilbert, Peter B.
    Carone, Marco
    Simon, Noah
    BIOMETRICS, 2021, 77 (01) : 9 - 22
  • [48] Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination
    Pourghasemi, Hamid Reza
    Pouyan, Soheila
    Bordbar, Mojgan
    Golkar, Foroogh
    Clague, John J.
    NATURAL HAZARDS, 2023, 116 (03) : 3797 - 3816
  • [49] VIDEO QUALITY ASSESSMENT USING TEMPORAL QUALITY VARIATIONS AND MACHINE LEARNING
    Narwaria, Manish
    Lin, Weisi
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [50] Classifying Quality of Web Services Using Machine Learning Classification and Cross Validation Techniques
    Olewy, Noor Al-Huda Hamed
    Hadi, Ameer Kadhim
    PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, : 125 - 130