Inferences for Modified Lindley Distribution Under Order Statistics with Applications

被引:0
作者
Goyal, A. [1 ]
Kumar, D. [2 ]
Joorel, J. P. S. [3 ]
Kumar, M. [4 ]
机构
[1] Panjab Univ, Dept Stat, Chandigarh, India
[2] Univ Delhi, Fac Math Sci, Dept Stat, Delhi, India
[3] Univ Jammu, Dept Stat, Jammu, India
[4] Cent Univ Haryana, Dept Stat, Jaat, Haryana, India
关键词
modified Lindley distribution; moments; order statistics; maximum likelihood estimator; best linear unbiased estimates; MOMENTS;
D O I
10.1007/s11223-024-00692-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we obtain relations for the moments of order statistics from the modified Lindley distribution without any restriction for the parameter. In addition, we use these moments to obtain the mean, variances, and covariances of order statistics from the modified Lindley distribution. In particular, we compare, through simulation study, the performance of the maximum likelihood estimation, ordinary and weighted least-squares estimation, percentile estimators, and Cram & eacute;r-von Mises estimators. Finally, we apply the paper's findings to some real data sets.
引用
收藏
页码:796 / 814
页数:19
相关论文
共 25 条
  • [1] Ahsanullah M, 2018, REVSTAT-STAT J, V16, P429
  • [2] A new extended rayleigh distribution with applications of COVID-19 data
    Almongy, Hisham M.
    Almetwally, Ehab M.
    Aljohani, Hassan M.
    Alghamdi, Abdulaziz S.
    Hafez, E. H.
    [J]. RESULTS IN PHYSICS, 2021, 23
  • [3] Arnold BC., 2003, 1 COURSE ORDER STAT, DOI DOI 10.1016/j.jare.2014.08.005
  • [4] Balakrishnan N, 1998, HANDB STAT, V16, P149, DOI 10.1016/S0169-7161(98)16009-1
  • [5] Recursive computation of the single and product moments of order statistics from the complementary exponential-geometric distribution
    Balakrishnan, N.
    Zhu, Xiaojun
    Al-Zahrani, Bander
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (11) : 2187 - 2201
  • [6] Balakrishnan N., 2014, Order statistics & inference: estimation methods
  • [7] A new modified Lindley distribution with properties and applications
    Chesneau, Christophe
    Tomy, Lishamol
    Gillariose, Jiju
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2021, 24 (07) : 1383 - 1403
  • [8] David H A., 2003, Order Statistics, V1st, DOI DOI 10.1002/0471722162
  • [9] Moments of order statistics of Topp-Leone distribution
    Genc, Ali I.
    [J]. STATISTICAL PAPERS, 2012, 53 (01) : 117 - 131
  • [10] Kumaraswamy Inverted Topp-Leone Distribution with Applications to COVID-19 Data
    Hassan, Amal S.
    Almetwally, Ehab M.
    Ibrahim, Gamal M.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 337 - 358