Data-driven optimization of a gas turbine combustor: A Bayesian approach addressing NOX emissions, lean extinction limits, and thermoacoustic stability

被引:0
作者
Reumschuessel, Johann Moritz [1 ]
von Saldern, Jakob G. R. [2 ]
Cosic, Bernhard [3 ]
Paschereit, Christian Oliver [1 ]
机构
[1] TU Berlin, Chair Fluid Dynam, Muller Breslau Str 8, D-10623 Berlin, Germany
[2] TU Berlin, Lab Flow Instabil & Dynam, Muller Breslau Str 8, D-10623 Berlin, Germany
[3] MAN Energy Solut SE, Steinbrinkstr 1, D-46145 Oberhausen, Germany
来源
DATA-CENTRIC ENGINEERING | 2024年 / 5卷
关键词
Bayesian statistics; data-driven optimization; emission reduction; gas turbine combustion; surrogate modeling; thermoacoustics; PRESSURE; DESIGN;
D O I
10.1017/dce.2024.29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design of gas turbine combustors for optimal operation at different power ratings is a multifaceted engineering task, as it requires the consideration of several objectives that must be evaluated under different test conditions. We address this challenge by presenting a data-driven approach that uses multiple probabilistic surrogate models derived from Gaussian process regression to automatically select optimal combustor designs from a large parameter space, requiring only a few experimental data points. We present two strategies for surrogate model training that differ in terms of required experimental and computational efforts. Depending on the measurement time and cost for a target, one of the strategies may be preferred. We apply the methodology to train three surrogate models under operating conditions where the corresponding design objectives are critical: reduction of NOx emissions, prevention of lean flame extinction, and mitigation of thermoacoustic oscillations. Once trained, the models can be flexibly used for different forms of a posteriori design optimization, as we demonstrate in this study.
引用
收藏
页数:24
相关论文
共 62 条
[1]  
Abel N., 1826, J. Reine Angew. Math, V1, P153, DOI DOI 10.1515/CRLL.1826.1.153
[2]  
Aguilar JG, 2018, PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 4A
[3]  
Angersbach A, 2013, PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 1A
[4]  
[Anonymous], 2006, J Fluid Sci Technol
[5]   Thermoacoustic Characterization of a Premixed Multi Jet Burner for Hydrogen and Natural Gas Combustion [J].
Beuth, Jan Paul ;
Reumschuessel, Johann Moritz ;
von Saldern, Jakob G. R. ;
Wassmer, Dominik ;
Cosic, Bernhard ;
Paschereit, Christian Oliver ;
Oberleithner, Kilian .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (04)
[6]   Effect of pressure and fuel-air unmixedness on NOx emissions from industrial gas turbine burners [J].
Biagioli, Fernando ;
Guethe, Felix .
COMBUSTION AND FLAME, 2007, 151 (1-2) :274-288
[7]   Bayesian optimization with output-weighted optimal sampling [J].
Blanchard, Antoine ;
Sapsis, Themistoklis .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 425
[8]   Active control of the acoustic boundary conditions of combustion test rigs [J].
Bothien, Mirko R. ;
Moeck, Jonas P. ;
Paschereit, Christian Oliver .
JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) :678-701
[9]   A Python']Python surrogate modeling framework with derivatives [J].
Bouhlel, Mohamed Amine ;
Hwang, John T. ;
Bartoli, Nathalie ;
Lafage, Remi ;
Morlier, Joseph ;
Martins, Joaquim R. R. A. .
ADVANCES IN ENGINEERING SOFTWARE, 2019, 135
[10]  
Bradford E, 2018, J GLOBAL OPTIM, V71, P407, DOI 10.1007/s10898-018-0609-2