Cross-domain few-shot semantic segmentation for the astronaut work environment

被引:0
作者
Sun, Qingwei [1 ,2 ]
Chao, Jiangang [2 ,3 ]
Lin, Wanhong [2 ,3 ]
机构
[1] Space Engn Univ, Dept Aerosp Sci & Technol, Beijing 101416, Peoples R China
[2] China Astronaut Res & Training Ctr, Beijing 100094, Peoples R China
[3] China Astronaut Res & Training Ctr, Natl Key Lab Human Factors Engn, Beijing 100094, Peoples R China
关键词
Few-shot semantic segmentation; Cross-domain; Astronaut training;
D O I
10.1016/j.asr.2024.08.069
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The study of few-shot semantic segmentation (FSS) for the astronaut work environment (AWE) is of significant importance as it enables the segmentation of unknown categories. However, general FSS methods are predicated on the assumption that the training and testing data belong to the same domain. When this assumption is invalid, the model's performance is significantly degraded. We propose a more general approach, whereby the model is trained on a generic dataset and tested on a dedicated AWE dataset. This challenging task is referred to as cross-domain few-shot semantic segmentation (CD-FSS). A novel model, namely FTDCNet, is proposed, which comprises a domain-agnostic feature transformation module and a domain-constrained transformer. The FTDCNet model demonstrates superior performance compared to the state-of-the-art (SOTA) model, with an accuracy improvement of 11.83% and 11.42% under 1-shot and 5-shot settings, respectively. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:5934 / 5949
页数:16
相关论文
共 69 条
  • [1] Adler T, 2021, Arxiv, DOI [arXiv:2010.06498, 10.48550/arXiv.2010.06498, DOI 10.48550/ARXIV.2010.06498]
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J]. Badrinarayanan, Vijay;Kendall, Alex;Cipolla, Roberto. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017(12)
  • [3] Domain Generalization by Solving Jigsaw Puzzles[J]. Carlucci, Fabio M.;D'Innocente, Antonio;Bucci, Silvia;Caputo, Barbara;Tommasi, Tatiana. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019
  • [4] Catalano N, 2023, Arxiv, DOI [arXiv:2304.05832, 10.48550/arXiv.2304.05832]
  • [5] SINGLE-DOMAIN GENERALIZATION FOR SEMANTIC SEGMENTATION VIA DUAL-LEVEL DOMAIN AUGMENTATION[J]. Chang, Shu-Jung;Lu, Chen-Yu;Huang, Pei-Kai;Hsu, Chiou-Ting. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023
  • [6] Dense affinity matching for Few-Shot Segmentation[J]. Chen, Hao;Dong, Yonghan;Lu, Zheming;Yu, Yunlong;Li, Yingming;Han, Jungong;Zhang, Zhongfei. NEUROCOMPUTING, 2024
  • [7] Chen J., 2021, arXiv
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. Chen, Liang-Chieh;Papandreou, George;Kokkinos, Iasonas;Murphy, Kevin;Yuille, Alan L. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018(04)
  • [9] Holistic Prototype Activation for Few-Shot Segmentation[J]. Cheng, Gong;Lang, Chunbo;Han, Junwei. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023(04)
  • [10] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848