Spatial-Temporal Similarity Fusion Graph Adversarial Convolutional Networks for traffic flow forecasting

被引:1
|
作者
Wang, Bin [1 ]
Long, Zhendan [1 ]
Sheng, Jinfang [1 ]
Zhong, Qiang [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410000, Hunan, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 17期
关键词
Traffic flow forecasting; Graph Convolutional Neural Network; Similarity measure; PREDICTION;
D O I
10.1016/j.jfranklin.2024.107299
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow forecasting is integral to the advancement of intelligent transportation systems and the development of smart cities. This paper introduces a novel model, the Spatial-Temporal Similarity Fusion Graphs Adversarial Convolutional Networks (STSF-GACN), which leverages advanced data preprocessing techniques to enhance the predictive accuracy and efficiency of traffic flow forecasting. The innovation of our approach lies in the meticulous construction of the spatial-temporal similarity matrix through the precise calculation of temporal and spatial similarities. This matrix forms the backbone of our model, serving as the generator in the integrated Generative Adversarial Network (GAN) architecture. The Spatial-Temporal Similarity Fusion Adaptive Graph Convolutional Network, developed as part of our GAN's generator, utilizes cutting- edge techniques such as the Wasserstein distance and Dynamic Time Warping to optimize the adaptive adjacency matrix, enabling the model to capture latent spatial-temporal correlations with unprecedented depth and precision. The discriminator of the GAN further refines the model by evaluating the accuracy of the traffic predictions, ensuring that the generative model produces results that are not only accurate but also robust against varying traffic conditions. This cohesive integration of GAN into the model architecture allows for a significant improvement in prediction accuracy and convergence speed, moving beyond traditional forecasting methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [32] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [33] Spatial-Temporal Fusion Graph Neural Networks With Mixed Adjacency for Weather Forecasting
    Guo, Ang
    Liu, Yanghe
    Shao, Shiyu
    Shi, Xiaowei
    Feng, Zhenni
    IEEE ACCESS, 2025, 13 : 15812 - 15824
  • [34] Spatial-Temporal-Correlation-Constrained Dynamic Graph Convolutional Network for Traffic Flow Forecasting
    Ge, Yajun
    Wang, Jiannan
    Zhang, Bo
    Peng, Fan
    Ma, Jing
    Yang, Chenyu
    Zhao, Yue
    Liu, Ming
    MATHEMATICS, 2024, 12 (19)
  • [35] Spatial-Temporal Graph Neural Network Framework with Multi-source Local and Global Information Fusion for Traffic Flow Forecasting
    Li, Yue-Xin
    Li, Jian-Yu
    Wang, Zi-Jia
    Zhan, Zhi-Hui
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I, 2022, 1491 : 371 - 385
  • [36] Multi-Step Spatial-Temporal Fusion Network for Traffic Flow Forecasting
    Dong, Honghui
    Meng, Ziying
    Wang, Yiming
    Jia, Limin
    Qin, Yong
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3412 - 3419
  • [37] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [38] Traffic forecasting with graph spatial-temporal position recurrent network
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    NEURAL NETWORKS, 2023, 162 : 340 - 349
  • [39] TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network for Traffic Flow Forecasting
    Chen, Xu
    Zhang, Yuanxing
    Du, Lun
    Fang, Zheng
    Ren, Yi
    Bian, Kaigui
    Xie, Kunqing
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 954 - 959
  • [40] Beyond homophily in spatial-temporal traffic flow forecasting
    Chen, Yuxin
    Huo, Jingyi
    Lin, Fangru
    Yan, Hui
    NEURAL NETWORKS, 2025, 183