A Note on Equivalent and Nonequivalent Parametrizations of the Two-Parameter Logistic Item Response Model

被引:1
作者
Robitzsch, Alexander [1 ,2 ]
机构
[1] IPN Leibniz Inst Sci & Math Educ, Olshausenstr 62, D-24118 Kiel, Germany
[2] Ctr Int Student Assessment ZIB, Olshausenstr 62, D-24118 Kiel, Germany
关键词
item response theory; 2PL model; AIC; unipolar IRT model; rational function model; Ramsay quotient model; partial membership; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER RECOVERY; RASCH; SIMULATION; MEMBERSHIP; BINARY; GRADE;
D O I
10.3390/info15110668
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The two-parameter logistic (2PL) item response model is typically estimated using an unbounded distribution for the trait theta. In this article, alternative specifications of the 2PL models are investigated that consider a bounded or a positively valued theta distribution. It is highlighted that these 2PL specifications correspond to the partial membership mastery model and the Ramsay quotient model, respectively. A simulation study revealed that model selection regarding alternative ranges of the theta distribution can be successfully applied. Different 2PL specifications were additionally compared for six publicly available datasets.
引用
收藏
页数:15
相关论文
共 94 条
[1]  
Aitkin M., 2011, Statistical Modeling of the National Assessment of Educational Progress, DOI [10.1007/978-1-4419-9937-5, DOI 10.1007/978-1-4419-9937-5]
[2]  
Aitkin M., 2006, Investigation of the Identifiability of the 3PL Model in the NAEP 1986 Math Survey
[3]  
Aitkin M, 2016, CH CRC STAT SOC BEHA, P217
[4]  
[Anonymous], 2024, R: A language and environment for statistical computing
[5]  
Barton M.A., 1981, UPPER ASYMPTOTE 3 PA, DOI DOI 10.1002/J.2333-8504.1981.TB01255.X
[6]  
Birnbaum A., 1968, Statistical theories of mental test scores, P397
[7]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[8]  
Burnham K.P., 2002, Springer Science Business Media
[9]   IRT Item Parameter Recovery With Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models [J].
Casabianca, Jodi M. ;
Lewis, Charles .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2015, 40 (06) :547-578
[10]   The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements [J].
Cavanaugh, Joseph E. ;
Neath, Andrew A. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2019, 11 (03)