Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost

被引:6
作者
Janos, Jiri [1 ,2 ]
Slavicek, Petr [1 ]
Curchod, Basile F. E. [2 ]
机构
[1] Univ Chem & Technol, Dept Phys Chem, Prague 6, Czech Republic
[2] Univ Bristol, Ctr Computat Chem, Sch Chem, Bristol BS8 1TS, England
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 42期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
SPECTROSCOPY; SIMULATIONS; PULSE;
D O I
10.1021/acs.jpclett.4c02549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.
引用
收藏
页码:10614 / 10622
页数:9
相关论文
共 37 条
[1]   Different flavors of nonadiabatic molecular dynamics [J].
Agostini, Federica ;
Curchod, Basile F. E. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2019, 9 (05)
[2]   Nonadiabatic dynamics with trajectory surface hopping method [J].
Barbatti, Mario .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (04) :620-633
[3]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[4]   Ultrafast Imaging of Molecules with Electron Diffraction [J].
Centurion, Martin ;
Wolf, Thomas J. A. ;
Yang, Jie .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2022, 73 :21-42
[5]   Colored-Noise Thermostats a la Carte [J].
Ceriotti, Michele ;
Bussi, Giovanni ;
Parrinello, Michele .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) :1170-1180
[6]   Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat [J].
Ceriotti, Michele ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[7]   Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics [J].
Crespo-Otero, Rachel ;
Barbatti, Mario .
CHEMICAL REVIEWS, 2018, 118 (15) :7026-7068
[8]   Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran [J].
Crespo-Otero, Rachel ;
Barbatti, Mario .
THEORETICAL CHEMISTRY ACCOUNTS, 2012, 131 (06) :1-14
[9]   SSAIMS-Stochastic-Selection Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics [J].
Curchod, Basile F. E. ;
Glover, William J. ;
Martinez, Todd J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (30) :6133-6143
[10]   Ab Initio Nonadiabatic Quantum Molecular Dynamics [J].
Curchod, Basile F. E. ;
Martinez, Todd J. .
CHEMICAL REVIEWS, 2018, 118 (07) :3305-3336