Stochastic gradient descent-based support vector machines training optimization on Big Data and HPC frameworks

被引:0
|
作者
Abeykoon, Vibhatha [1 ]
Fox, Geoffrey [1 ]
Kim, Minje [1 ]
Ekanayake, Saliya [2 ]
Kamburugamuve, Supun [1 ]
Govindarajan, Kannan [1 ]
Wickramasinghe, Pulasthi [1 ]
Perera, Niranda [1 ]
Widanage, Chathura [1 ]
Uyar, Ahmet [1 ]
Gunduz, Gurhan [1 ]
Akkas, Selahatin [1 ]
机构
[1] Intelligent Systems Engineering, Indiana University Bloomington, Bloomington,IN, United States
[2] Performance and Algorithm Research, Lawrence Berkeley National Laboratory, Berkeley,CA, United States
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
e6292
中图分类号
学科分类号
摘要
Mean square error - Data flow analysis - Learning systems - Modeling languages - Big data - Hybrid systems - Learning algorithms - C++ (programming language) - Stochastic models - Stochastic systems - Benchmarking - Gradient methods - Optimization
引用
收藏
相关论文
共 50 条
  • [1] Stochastic gradient descent-based support vector machines training optimization on Big Data and HPC frameworks
    Abeykoon, Vibhatha
    Fox, Geoffrey
    Kim, Minje
    Ekanayake, Saliya
    Kamburugamuve, Supun
    Govindarajan, Kannan
    Wickramasinghe, Pulasthi
    Perera, Niranda
    Widanage, Chathura
    Uyar, Ahmet
    Gunduz, Gurhan
    Akkas, Selahatin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (08):
  • [2] Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
    Jiang, Wei
    Siddiqui, Sauleh
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2020, 8 (01) : 85 - 101
  • [3] A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training
    Paul Tseng
    Sangwoon Yun
    Computational Optimization and Applications, 2010, 47 : 179 - 206
  • [4] A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training
    Tseng, Paul
    Yun, Sangwoon
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 47 (02) : 179 - 206
  • [5] The coordinate descent method with stochastic optimization for linear support vector machines
    Zheng, Tianyou
    Liang, Xun
    Cao, Run
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (7-8): : 1261 - 1266
  • [6] The coordinate descent method with stochastic optimization for linear support vector machines
    Tianyou Zheng
    Xun Liang
    Run Cao
    Neural Computing and Applications, 2013, 22 : 1261 - 1266
  • [7] Parallel Implementation on FPGA of Support Vector Machines Using Stochastic Gradient Descent
    Lopes, Felipe E.
    Ferreira, Joao Canas
    Fernandes, Marcelo A. C.
    ELECTRONICS, 2019, 8 (06)
  • [8] Stochastic Gradient Descent Support Vector Clustering
    Tung Pham
    Hang Dang
    Trung Le
    Hoang-Thai Le
    PROCEEDINGS OF 2015 2ND NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT CONFERENCE ON INFORMATION AND COMPUTER SCIENCE NICS 2015, 2015, : 88 - 93
  • [9] Stochastic Gradient Descent-based Inference for Dynamic Network Models with Attractors
    Pan, Hancong
    Zhu, Xiaojing
    Caliskan, Cantay
    Christenson, Dino P.
    Spiliopoulos, Konstantinos
    Walker, Dylan
    Kolaczyk, Eric D.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025,
  • [10] Batch Gradient Descent-based Optimization of WMMSE for Rate Splitting Strategy
    Wang, Zhijie
    Ma, Ruhui
    Shi, Hongjian
    Liu, Liwei
    Guan, Haibing
    2022 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS, 2022,