Nonreciprocal mechanical entanglement in a spinning optomechanical system

被引:1
作者
Chen, Shan-Shan [1 ]
Zhang, Jing-Jing [1 ]
Li, Jia-Neng [1 ]
Zhang, Na-Na [1 ]
Guo, Yong-Rui [1 ]
Yang, Huan [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing 400065, Peoples R China
关键词
optomechanical system; quantum entanglement; nonreciprocity; Sagnac effect; 03.67.Bg; 42.50.-p; 42.50.Pq; NON-RECIPROCITY; QUANTUM; LIGHT;
D O I
10.1088/1674-1056/ad72e1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing. We achieve the nonreciprocal mechanical entanglement in a compound optomechanical device consisting of two mechanical oscillators and a spinning whispering-gallery mode (WGM) optical microresonator. It is found that obvious nonreciprocal mechanical entanglement emerges in this system in the presence of the Sagnac effect which is induced by the rotation of the WGM resonator, and the nonreciprocal region can be controlled by tuning the angular velocity of the rotation. The nonreciprocity originates from the breaking of the time-reversal symmetry of this multimode system due to the presence of the Sagnac effect. The optomechanical coupling and the mechanical interaction provide cooling channels for the first and second mechanical oscillators, respectively. Two mechanical oscillators can be cooled simultaneously. The simultaneous cooling and the mechanical coupling of two mechanical oscillators ensure the generation of mechanical entanglement. Furthermore, an optimal mechanical entanglement can be achieved when the moderate optical frequency detuning and the driving power are chosen. The thermal noise of the mechanical environment has a negative effect on mechanical entanglement. Our scheme provides promising opportunities for research of quantum information processing based on phonons and sensitive measurements.
引用
收藏
页数:7
相关论文
共 67 条
[11]   Nonreciprocal photon-phonon entanglement in Kerr-modified spinning cavity magnomechanics [J].
Chen, Jiaojiao ;
Fan, Xiao-Gang ;
Xiong, Wei ;
Wang, Dong ;
Ye, Liu .
PHYSICAL REVIEW A, 2024, 109 (04)
[12]   Nonreciprocal Mechanical Squeezing in a Spinning Optomechanical System [J].
Chen, Shan-Shan ;
Meng, Shan-Shan ;
Deng, Hong ;
Yang, Guo-Jian .
ANNALEN DER PHYSIK, 2021, 533 (01)
[13]   Wavelength-sized GaAs optomechanical resonators with gigahertz frequency [J].
Ding, L. ;
Baker, C. ;
Senellart, P. ;
Lemaitre, A. ;
Ducci, S. ;
Leo, G. ;
Favero, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[14]  
Estep NA, 2014, NAT PHYS, V10, P923, DOI [10.1038/nphys3134, 10.1038/NPHYS3134]
[15]   Nonreciprocal Light Propagation in a Silicon Photonic Circuit [J].
Feng, Liang ;
Ayache, Maurice ;
Huang, Jingqing ;
Xu, Ye-Long ;
Lu, Ming-Hui ;
Chen, Yan-Feng ;
Fainman, Yeshaiahu ;
Scherer, Axel .
SCIENCE, 2011, 333 (6043) :729-733
[16]   Nonreciprocal mechanical squeezing in a spinning cavity optomechanical system via pump modulation [J].
Guo, Qi ;
Zhou, Ke-Xin ;
Bai, Cheng-Hua ;
Zhang, Yuchi ;
Li, Gang ;
Zhang, Tiancai .
PHYSICAL REVIEW A, 2023, 108 (03)
[17]   Magnetized Spiral Chains of Plasmonic Ellipsoids for One-Way Optical Waveguides [J].
Hadad, Y. ;
Steinberg, Ben Z. .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[18]   Multimode optomechanical cooling via general dark-mode control [J].
Huang, Jian ;
Lai, Deng-Gao ;
Liu, Cheng ;
Huang, Jin-Feng ;
Nori, Franco ;
Liao, Jie-Qiao .
PHYSICAL REVIEW A, 2022, 106 (01)
[19]   Nonreciprocal enhancement of macroscopic entanglement with noise tolerance [J].
Huang, Z. -H. ;
Jiao, Y. -F. ;
Yan, L. -L. ;
Wang, D. -Y. ;
Su, S. -L. ;
Jing, Hui .
PHYSICAL REVIEW A, 2024, 110 (01)
[20]   Millisecond Photon Lifetime in a Slow-Light Microcavity [J].
Huet, V. ;
Rasoloniaina, A. ;
Guilleme, P. ;
Rochard, P. ;
Feron, P. ;
Mortier, M. ;
Levenson, A. ;
Bencheikh, K. ;
Yacomotti, A. ;
Dumeige, Y. .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)