Nonreciprocal mechanical entanglement in a spinning optomechanical system

被引:1
作者
Chen, Shan-Shan [1 ]
Zhang, Jing-Jing [1 ]
Li, Jia-Neng [1 ]
Zhang, Na-Na [1 ]
Guo, Yong-Rui [1 ]
Yang, Huan [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing 400065, Peoples R China
关键词
optomechanical system; quantum entanglement; nonreciprocity; Sagnac effect; 03.67.Bg; 42.50.-p; 42.50.Pq; NON-RECIPROCITY; QUANTUM; LIGHT;
D O I
10.1088/1674-1056/ad72e1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing. We achieve the nonreciprocal mechanical entanglement in a compound optomechanical device consisting of two mechanical oscillators and a spinning whispering-gallery mode (WGM) optical microresonator. It is found that obvious nonreciprocal mechanical entanglement emerges in this system in the presence of the Sagnac effect which is induced by the rotation of the WGM resonator, and the nonreciprocal region can be controlled by tuning the angular velocity of the rotation. The nonreciprocity originates from the breaking of the time-reversal symmetry of this multimode system due to the presence of the Sagnac effect. The optomechanical coupling and the mechanical interaction provide cooling channels for the first and second mechanical oscillators, respectively. Two mechanical oscillators can be cooled simultaneously. The simultaneous cooling and the mechanical coupling of two mechanical oscillators ensure the generation of mechanical entanglement. Furthermore, an optimal mechanical entanglement can be achieved when the moderate optical frequency detuning and the driving power are chosen. The thermal noise of the mechanical environment has a negative effect on mechanical entanglement. Our scheme provides promising opportunities for research of quantum information processing based on phonons and sensitive measurements.
引用
收藏
页数:7
相关论文
共 67 条
[1]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[2]   Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor [J].
Ahn, Jonghoon ;
Xu, Zhujing ;
Bang, Jaehoon ;
Deng, Yu-Hao ;
Hoang, Thai M. ;
Han, Qinkai ;
Ma, Ren-Min ;
Li, Tongcang .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[3]   Continuous-variable quantum information processing [J].
Andersen, Ulrik L. ;
Leuchs, Gerd ;
Silberhorn, Christine .
LASER & PHOTONICS REVIEWS, 2010, 4 (03) :337-354
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]  
Auld BA., 1959, IRE Transactions on Microwave Theory and Techniques, V7, P238, DOI 10.1109/TMTT.1959.1124688
[6]   Brillouin cavity optomechanics with microfluidic devices [J].
Bahl, Gaurav ;
Kim, Kyu Hyun ;
Lee, Wonsuk ;
Liu, Jing ;
Fan, Xudong ;
Carmon, Tal .
NATURE COMMUNICATIONS, 2013, 4
[7]   Strong mechanical squeezing in a standard optomechanical system by pump modulation [J].
Bai, Cheng-Hua ;
Wang, Dong-Yang ;
Zhang, Shou ;
Liu, Shutian ;
Wang, Hong-Fu .
PHYSICAL REVIEW A, 2020, 101 (05)
[8]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[9]   Nonreciprocal magnon-photon-phonon entanglement in cavity magnomechanics [J].
Chakraborty, Subhadeep ;
Das, Camelia .
PHYSICAL REVIEW A, 2023, 108 (06)
[10]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92