Enhancing cross-domain robustness in phonocardiogram signal classification using domain-invariant preprocessing and transfer learning

被引:0
|
作者
Maity, Arnab [1 ]
Saha, Goutam [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Elect & Elect Commun Engn, Kharagpur 721302, West Bengal, India
关键词
Phonocardiogram; Cross-domain evaluation; Wavelet transform; Transfer learning; Data imbalance; Preprocessing; HEART-SOUND CLASSIFICATION; AUTOMATED DETECTION; NEURAL-NETWORKS; AUDIO; SEGMENTATION; ADAPTATION; ALGORITHM; FEATURES; SMOTE;
D O I
10.1016/j.cmpb.2024.108462
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Phonocardiogram (PCG) signal analysis is a non-invasive and cost-efficient approach for diagnosing cardiovascular diseases. Existing PCG-based approaches employ signal processing and machine learning (ML) for automatic disease detection. However, machine learning techniques are known to underperform in cross-corpora arrangements. A drastic effect on disease detection performance is observed when training and testing sets come from different PCG databases with varying data acquisition settings. This study investigates the impact of data acquisition parameter variations in the PCG data across different databases and develops methods to achieve robustness against these variations. Methods: To alleviate the effect of dataset-induced variations, it employs a combination of three strategies: domain-invariant preprocessing, transfer learning, and domain-balanced variable hop fragment selection (DBVHFS). The domain-invariant preprocessing normalizes the PCG to reduce the stethoscope and environment- induced variations. The transfer learning utilizes a pre-trained model trained on diverse audio data to reduce the impact of data variability by generalizing feature representations. DBVHFS facilitates unbiased fine-tuning of the pre-trained model by balancing the training fragments across all domains, ensuring equal distribution from each class. Results: The proposed method is evaluated on six independent PhysioNet/CinC Challenge 2016 PCG databases using leave-one-dataset-out cross-validation. Results indicate that our system outperforms the existing study with a relative improvement of 5.92% in unweighted average recall and 17.71% insensitivity. Conclusions: The methods proposed in this study address variations in PCG data originating from different sources, potentially enhancing the implementation possibility of automated cardiac screening systems in real-life scenarios.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A Transfer Learning Analysis of Political Leaning Classification in Cross-domain Content
    Caled, Danielle
    Silva, Mario J.
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2022, 2022, 13208 : 267 - 277
  • [32] Deep Transfer Learning for Social Media Cross-Domain Sentiment Classification
    Zhao, Chuanjun
    Wang, Suge
    Li, Deyu
    SOCIAL MEDIA PROCESSING, SMP 2017, 2017, 774 : 232 - 243
  • [33] CROSS-DOMAIN SENTIMENT CLASSIFICATION USING DEEP LEARNING APPROACH
    Sun, Miao
    Tan, Qi
    Ding, Runwei
    Liu, Hong
    2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2014, : 60 - 64
  • [34] DOMAIN-INVARIANT FEATURE LEARNING FOR CROSS CORPUS SPEECH EMOTION RECOGNITION
    Gao, Yuan
    Okada, Shogo
    Wang, Longbiao
    Liu, Jiaxing
    Dang, Jianwu
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 6427 - 6431
  • [35] Representation Learning for Imbalanced Cross-Domain Classification
    Cheng, Lu
    Guo, Ruocheng
    Candan, K. Selcuk
    Liu, Huan
    PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM), 2020, : 478 - 486
  • [36] Domain-invariant attention network for transfer learning between cross-scene hyperspectral images
    Ye, Minchao
    Wang, Chenglong
    Meng, Zhihao
    Xiong, Fengchao
    Qian, Yuntao
    IET COMPUTER VISION, 2023, 17 (07) : 739 - 749
  • [37] Cross-domain image description generation using transfer learning
    Kinghorn, Philip
    Zhang, Li
    DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 1462 - 1469
  • [38] Cross-Domain Transfer in Reinforcement Learning using Target Apprentice
    Joshi, Girish
    Chowdhary, Girish
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 7525 - 7532
  • [39] Graph Domain Adversarial Transfer Network for Cross-Domain Sentiment Classification
    Tang, Hengliang
    Mi, Yuan
    Xue, Fei
    Cao, Yang
    IEEE ACCESS, 2021, 9 (09): : 33051 - 33060
  • [40] Cardiovascular disease diagnosis using cross-domain transfer learning
    Tadesse, Girmaw Abebe
    Zhu, Tingting
    Liu, Yong
    Zhou, Yingling
    Chen, Jiyan
    Tian, Maoyi
    Clifton, David
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 4262 - 4265