Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation

被引:22
作者
Alijagic A. [1 ]
Barbero F. [2 ]
Gaglio D. [3 ,4 ]
Napodano E. [4 ]
Benada O. [5 ]
Kofroňová O. [5 ]
Puntes V.F. [2 ,6 ,7 ]
Bastús N.G. [2 ]
Pinsino A. [1 ]
机构
[1] Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo
[2] Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona
[3] Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Segrate, MI
[4] SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano
[5] Institute of Microbiology of the Czech Academy of Sciences, Prague
[6] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
[7] Vall d Hebron, Institut de Recerca (VHIR), Barcelona
基金
欧盟地平线“2020”;
关键词
Immune metabolic rewiring; Immunoreactivity; Innate defence response; Nano-recognition; Sea urchin immune cells;
D O I
10.1016/j.jhazmat.2020.123793
中图分类号
学科分类号
摘要
We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP–AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP–AuNPs (1 and 10 μg mL−1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP–AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein “corona” surrounding the NPs from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP–AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP–AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 hours of exposure. These results emphasise that exposure to PVP–AuNPs drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP–AuNPs and provides more details regarding the immunogenicity of these NPs. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 74 条
  • [1] Abdal Dayem A., Hossain M.K., Lee S.B., Kim K., Saha S.K., Yang G.M., Choi H.Y., Cho S.G., The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles, Int. J. Mol. Sci., 18, 1, (2017)
  • [2] Alijagic A., Benada O., Kofronova O., Cigna D., Pinsino A., Sea urchin extracellular proteins design a complex protein corona on titanium dioxide nanoparticle surface influencing immune cell behaviour, Front. Immunol., 10, (2019)
  • [3] Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofronova O., Pinsino A., Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity, J. Hazard. Mater., 384, (2020)
  • [4] Barbero F., Moriones O.H., Bastus N.G., Puntes V., Dynamic equilibrium in the cetyltrimethylammonium bromide–Au nanoparticle bilayer, and the consequent impact on the formation of the nanoparticle protein corona, Bioconjug. Chem., 30, 11, pp. 2917-2930, (2019)
  • [5] Barreto A., Luis L.G., Girao A.V., Trindade T., Soares A.M., Oliveira M., Behavior of colloidal gold nanoparticles in different ionic strength media, J. Nanoparticle Res., 17, 12, (2015)
  • [6] Bastus N.G., Comenge J., Puntes V., Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening, Langmuir, 27, 17, pp. 11098-11105, (2011)
  • [7] Boraschi D., Italiani P., Palomba R., Decuzzi P., Duschl A., Fadeel B., Moghimi S.M., Nanoparticles and innate immunity: new perspectives on host defence, Semin. Immunol., 34, pp. 33-51, (2017)
  • [8] Boraschi D., Alijagic A., Auguste M., Barbero F., Ferrari E., Hernadi S., Mayall M., Michelini S., Navarro Pacheco N.I., Prinelli A., Swart E., Swartzwelter B.J., Bastus N.G., Canesi L., Drobne D., Duschl A., Ewart M., Horejs-Hoeck J., Italiani P., Kemmerling B., Kille P., Prochazkova P., Puntes V.F., Spurgeon D.J., Svendsen C., Wilde C.J., Pinsino A., Addressing nanomaterial immunosafety by evaluating innate immunity across living species, Small, 2020, (2020)
  • [9] Carabelli J., Quattrocchi V., D'Antuono A., Zamorano P., Tribulatti M.V., Campetella O., Galectin-8 activates dendritic cells and stimulates antigen-specific immune response elicitation, J. Leukoc. Biol., 102, 5, pp. 1237-1247, (2017)
  • [10] Chen F., Wang G., Griffin J.I., Brenneman B., Banda N.K., Holers V.M., Backos D.S., Wu L., Moghimi S.M., Simberg D., Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo, Nat. Nanotechnol., 12, 4, (2017)