Comparative Assessment of U-Net-Based Deep Learning Models for Segmenting Microfractures and Pore Spaces in Digital Rocks

被引:0
|
作者
Wang, Hongsheng [1 ]
Guo, Ruichang [1 ]
Dalton, Laura E. [2 ]
Crandall, Dustin [3 ]
Hosseini, Seyyed A. [1 ]
Fan, Ming [4 ]
Chen, Cheng [5 ]
机构
[1] Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas, Austin, United States
[2] Department of Civil and Environmental Engineering, Duke University, United States
[3] Research and Innovation Center, National Energy Technology Laboratory, United States
[4] Computational Sciences and Engineering Division, Oak Ridge National Laboratory, United States
[5] Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, United States
来源
SPE Journal | / 29卷 / 11期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Access control - Asphaltenes - Benchmarking - Computerized tomography - Image enhancement - Inverse problems - Network security - Petroleum reservoir evaluation - Photomapping - Rock mechanics - Steganography
引用
收藏
页码:5779 / 5791
相关论文
共 1 条
  • [1] Bladder Cancer Segmentation using U-Net-based Deep-Learning
    Clever, Jonathan
    Hadjiiski, Lubomir
    Chan, Heang-Ping
    Cohan, Richard H.
    Caoili, Elaine M.
    Cha, Kenny
    Samala, Ravi
    Zhou, Chuan
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2023, 12465