A CONVERGENT EVOLVING FINITE ELEMENT METHOD WITH ARTIFICIAL TANGENTIAL MOTION FOR SURFACE EVOLUTION UNDER A PRESCRIBED VELOCITY FIELD

被引:2
作者
Bai, Genming [1 ]
Hu, Jiashun [1 ]
Li, Buyang [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
关键词
evolving surface finite element method; artificial tangential velocity; mesh property; transport equations; optimal error estimate; stability; REACTION-DIFFUSION EQUATIONS; APPROXIMATION; FLOW; SCHEME; CURVE;
D O I
10.1137/23M156968X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel evolving surface finite element method, based on a novel equivalent formulation of the continuous problem, is proposed for computing the evolution of a closed hypersurface moving under a prescribed velocity field in two- and three-dimensional spaces. The method improves the mesh quality of the approximate surface by minimizing the rate of deformation using an artificial tangential motion. The transport evolution equations of the normal vector and the extrinsic Weingarten matrix are derived and coupled with the surface evolution equations to ensure stability and convergence of the numerical approximations. Optimal-order convergence of the semidiscrete evolving surface finite element method is proved for finite elements of degree k \geq 2. Numerical examples are provided to illustrate the convergence of the proposed method and its effectiveness in improving mesh quality on the approximate evolving surface.
引用
收藏
页码:2172 / 2195
页数:24
相关论文
共 47 条
[1]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[2]   Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations [J].
Bao, Weizhu ;
Garcke, Harald ;
Nurnberg, Robert ;
Zhao, Quan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
[3]  
Barrett J.W., 2020, Handb. Numer. Anal., V21, P275
[4]   A variational formulation of anisotropic geometric evolution equations in higher dimensions [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
NUMERISCHE MATHEMATIK, 2008, 109 (01) :1-44
[5]   On the parametric finite element approximation of evolving hypersurfaces in R3 [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) :4281-4307
[6]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[7]   NUMERICAL ANALYSIS FOR A SYSTEM COUPLING CURVE EVOLUTION TO REACTION DIFFUSION ON THE CURVE [J].
Barrett, John W. ;
Deckelnick, Klaus ;
Styles, Vanessa .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :1080-1100
[8]   Numerical computations of faceted pattern formation in snow crystal growth [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
PHYSICAL REVIEW E, 2012, 86 (01)
[9]   Finite-element approximation of coupled surface and grain boundary motion with applications to thermal grooving and sintering [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2010, 21 (06) :519-556
[10]   On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) :6270-6299