Anisotropic Thermal Conductivity Oscillations in Relation to the Putative Kitaev Spin Liquid Phase of α-RuCl3

被引:1
作者
Zhang, Heda [1 ]
Miao, Hu [1 ]
Ward, Thomas Z. [1 ]
Mandrus, David G. [1 ]
Nagler, Stephen E. [2 ]
McGuire, Michael A. [1 ]
Yan, Jiaqiang [1 ]
机构
[1] Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN
[2] Neutron Science Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN
关键词
D O I
10.1103/PhysRevLett.133.206603
中图分类号
学科分类号
摘要
In the presence of an external magnetic field, the Kitaev model could host either gapped topological anyons or gapless Majorana fermions. In α-RuCl3, the gapped and gapless cases are only separated by a 30° rotation of the in-plane magnetic field vector. The presence or absence of the spectral gap is key for understanding the thermal transport behavior in α-RuCl3. Here, we study the anisotropy of the oscillatory features of thermal conductivity in α-RuCl3. We examine the oscillatory features of thermal conductivities (κ//a, κ//b) with fixed external fields and find distinct behavior for the gapped (B//a) and gapless (B//b) scenarios. Furthermore, we track the evolution of thermal resistivity (λa) and its oscillatory features with the rotation of in-plane magnetic fields from B//b to B//a. The thermal resistivity λ(B,φ) displays distinct rotational symmetries before and after the emergence of the field-induced Kitaev spin liquid phase. These results suggest that oscillatory features of thermal conductivity in α-RuCl3 are closely linked to the putative Kitaev spin liquid phase and its excitations. © 2024 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [1] Kitaev A., Ann. Phys. (Amsterdam), 321, (2006)
  • [2] Kitaev A., Ann. Phys. (Amsterdam), 303, (2003)
  • [3] Plumb K. W., Clancy J. P., Sandilands L. J., Shankar V. V., Hu Y. F., Burch K. S., Kee H.-Y., Kim Y.-J., Phys. Rev. B, 90, (2014)
  • [4] Banerjee A., Bridges C., Yan J.-Q., Aczel A., Li L., Stone M., Granroth G., Lumsden M., Yiu Y., Knolle J., Nat. Mater, 15, (2016)
  • [5] Ran K., Wang J., Wang W., Dong Z.-Y., Ren X., Bao S., Li S., Ma Z., Gan Y., Zhang Y., Park J. T., Deng G., Danilkin S., Yu S.-L., Li J.-X., Wen J., Phys. Rev. Lett, 118, (2017)
  • [6] Do S.-H., Park S.-Y., Yoshitake J., Nasu J., Motome Y., Kwon Y., Adroja D. T., Voneshen D. J., Kim K., Jang T.-H., Park J.-H., Choi K.-Y., Ji S., Nat. Phys, 13, (2017)
  • [7] Cao H. B., Banerjee A., Yan J.-Q., Bridges C. A., Lumsden M. D., Mandrus D. G., Tennant D. A., Chakoumakos B. C., Nagler S. E., Phys. Rev. B, 93, (2016)
  • [8] Sears J. A., Zhao Y., Xu Z., Lynn J. W., Kim Y.-J., Phys. Rev. B, 95, (2017)
  • [9] Zheng J., Ran K., Li T., Wang J., Wang P., Liu B., Liu Z.-X., Normand B., Wen J., Yu W., Phys. Rev. Lett, 119, (2017)
  • [10] Hentrich R., Wolter A. U. B., Zotos X., Brenig W., Nowak D., Isaeva A., Doert T., Banerjee A., Lampen-Kelley P., Mandrus D. G., Nagler S. E., Sears J., Kim Y.-J., Buchner B., Hess C., Phys. Rev. Lett, 120, (2018)