Amplification-free miRNA detection with CRISPR/Cas12a system based on fragment complementary activation strategy

被引:2
|
作者
Zhao, Shuang [1 ,2 ]
Zhang, Qiuting [1 ,2 ]
Luo, Ran [1 ]
Sun, Jiudi [1 ,2 ]
Zhu, Cheng [3 ,4 ]
Zhou, Dianming [5 ]
Gong, Xiaoqun [1 ,2 ]
机构
[1] Tianjin Univ, Fac Med, Sch Life Sci, Tianjin 300072, Peoples R China
[2] Tianjin Engn Ctr Micronano Biomat & Detect Treatme, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Fac Med, Sch Life Sci, Tianjin 300072, Peoples R China
[4] Tianjin Key Lab Funct & Applicat Biol Macromol Str, Tianjin 300072, Peoples R China
[5] Tianjin Ctr Dis Control & Prevent, Dept Toxicol, NHC Specialty Lab Food Safety Risk Assessment & St, Tianjin Key Lab Pathogen Microbiol Infect Dis, Tianjin 300011, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
CRISPR-CAS12A; ASSAY; CPF1; RNA;
D O I
10.1039/d4sc05647g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CRISPR/Cas12a systems have been repurposed as powerful tools for developing next-generation molecular diagnostics due to their trans-cleavage ability. However, it was long considered that the CRISPR/Cas12a system could only recognize DNA targets. Herein, we systematically investigated the intrinsic trans-cleavage activity of the CRISPR/Cas12a system (LbCas12a) and found that it could be activated through fragmented ssDNA activators. Remarkably, we discovered that the single-stranded DNA (ssDNA) activators in the complementary crRNA-distal domain could be replaced by target miRNA sequences without the need for pre-amplification or specialized recognition mechanisms. Based on these findings, we proposed the "Fragment Complementary Activation Strategy" (FCAS) and designed reverse fluorescence-enhanced lateral flow test strips (rFLTS) for the direct detection of miRNA-10b, achieving a limit of detection (LOD) of 5.53 fM and quantifying the miRNA-10b biomarker in clinical serum samples from glioma patients. Moreover, for the first time, we have developed the FCAS-based CRISPR/Cas12a system for miRNA in situ imaging, effectively recognizing tumor cells. The FCAS not only broadens the scope of CRISPR/Cas12a system target identification but also unlocks the potential for in-depth studies of CRISPR technology in many diagnostic settings. We proposed the 'Fragment Complementary Activation Strategy' (FCAS) based on the CRISPR/Cas12a system and designed fragment activators consisting of ssDNA and miRNA targets, enabling the direct detection of miRNAs.
引用
收藏
页码:18347 / 18354
页数:8
相关论文
共 50 条
  • [41] A Fully Automated Point-of-Care Device Using Organic Electrochemical Transistor-Enhanced CRISPR/Cas12a for Amplification-Free Nucleic Acid Detection
    Chen, Jing
    Yang, Deqi
    Ji, Daizong
    Guo, Bihan
    Guo, Yuqian
    Lin, Huiping
    Zhang, Ru
    Chang, Zhiqiang
    Lu, Yuhan
    Zhu, Guoqi
    Zhao, Lei
    Rungrotmongkol, Thanyada
    Lu, Xinxin
    Ren, Qinjuan
    Wu, Wenjuan
    Zhang, Ya
    Fang, Yin
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [42] Mini crRNA-mediated CRISPR/Cas12a system (MCM-CRISPR/Cas12a) and its application in RNA detection
    Chen, Xiaolong
    Huang, Chaowang
    Zhang, Jing
    Hu, Qiao
    Wang, Dan
    You, Qianyi
    Guo, Yawen
    Chen, Huaping
    Xu, Jing
    Hu, Mingdong
    TALANTA, 2024, 268
  • [43] Rapid detection of Mycoplasma hyopneumoniae by recombinase-aided amplification combined with the CRISPR/Cas12a system
    Li, Kaili
    Luo, Tingyu
    Zhang, Yu
    Li, Changwen
    Chen, Hongyan
    Xia, Changyou
    Gao, Caixia
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [44] A label-free electrochemical sensor for the detection of two kinds of targets based on CRISPR/Cas12a system
    Liu, Bo
    Lu, Weishen
    Huang, Yibo
    Zhang, Xiaoru
    Yuan, Xunyi
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 406
  • [45] Detection for MiRNA21 by combining CRISPR/Cas12a with catalytic hairpin assembly
    Li, Tian
    Zou, Hongmin
    Chen, Fei
    You, Yun
    Zhang, Liping
    Chinese Journal of Analysis Laboratory, 2024, 43 (04) : 559 - 563
  • [46] A phage amplification-assisted SEA-CRISPR/Cas12a system for viable bacteria detection
    Xiao, Xiangyang
    Zhang, Chenlu
    Zhang, Li
    Zuo, Chen
    Wu, Wei
    Cheng, Fumei
    Wu, Di
    Xie, Guoming
    Mao, Xiang
    Yang, Yujun
    JOURNAL OF MATERIALS CHEMISTRY B, 2025, 13 (04) : 1372 - 1382
  • [47] Amplification-free CRISPR-Cas13a assay for detection of Taura syndrome virus
    Liu, Jianying
    Li, Ye
    Cao, Hubei
    Yao, Sisi
    Hu, Keshun
    Zhao, Qian
    He, Runzhen
    Zhu, Ningyu
    Yu, Xiaoping
    Fang, Shaohua
    Huang, Jun
    AQUACULTURE REPORTS, 2023, 30
  • [48] A nanopore-based label-free CRISPR/Cas12a system for portable and ultrasensitive detection of zearalenone
    Pei, Ziye
    Su, Zhuoqun
    Chen, Jianing
    Li, Wenrui
    Wu, Di
    Li, Lin
    Wu, Yongning
    Li, Guoliang
    ANALYTICA CHIMICA ACTA, 2024, 1320
  • [49] CRISPR/Cas13a-triggered Cas12a biosensing method for ultrasensitive and specific miRNA detection
    Zhao, Dan
    Tang, Jiutang
    Tan, Qin
    Xie, Xiaohong
    Zhao, Xin
    Xing, Dingpei
    TALANTA, 2023, 260
  • [50] Amplification-Free, Single-Microbead-Based Cas12a Assay for One-Step DNA Detection at the Single-Molecule Level
    Yang, Xueping
    Li, Jingyun
    Zhang, Suixin
    Li, Chao
    Ma, Jiehua
    ANALYTICAL CHEMISTRY, 2022, 94 (38) : 13076 - 13083