Deep Learning-based Knowledge Graph and Digital Twin Relationship Mining and Prediction Modeling

被引:0
|
作者
He F. [1 ]
Bai W. [2 ,3 ]
Wang Z. [4 ]
机构
[1] School of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Liaoning, Shenyang
[2] Intelligent Policing Key Laboratory of Sichuan Province, Sichuan, Luzhou
[3] Department of Transportation Management, Sichuan Police College, Sichuan, Luzhou
[4] School of Investigation and Counter-Terrorism, Criminal Investigation Police University of China, Liaoning, Shenyang
关键词
Attention mechanism; Deep learning; Digital twin technology; Knowledge graph; TransE model;
D O I
10.2478/amns-2024-1618
中图分类号
学科分类号
摘要
The era of big data produces massive data, and carrying out data mining can effectively obtain effective information in huge data, which provides support for efficient decision-making and intelligent optimization. The purpose of this paper is to establish a digital twin system, preprocess massive data using random matrix theory, and design the knowledge graph construction process based on digital twin technology. The BERT model, attention mechanism, BiLSTM model, and conditional random field of the joint deep learning technology are used to identify the knowledge entities in the digital twin system, extract the knowledge relations through the Transformer model, and utilize the TransE model for the knowledge representation in order to construct the knowledge graph. Then, the constructed knowledge graph is combined with the multi-feature attention mechanism to build an anomaly data prediction model in the digital twin system. Finally, the effectiveness of the methods in this paper is validated through corresponding experiments. The TransE model is used for knowledge representation. The accuracy of ternary classification is higher than 80% in all cases, and the MR value decreases by up to 64 compared to the TransR model. The F1 composite score of the anomaly data prediction model is 0.911, and the AUC value of the validation of knowledge graph effectiveness is 0.702. Combining deep learning with the knowledge graph, the knowledge information can be realized in the digital twin system's accurate representation and enhance the data mining ability of the digital twin system. © 2024 Fangzhou He, published by Sciendo.
引用
收藏
相关论文
共 50 条
  • [41] Lifetime Prediction Using a Tribology-Aware, Deep Learning-Based Digital Twin of Ball Bearing-Like Tribosystems in Oil and Gas
    Desai, Prathamesh S.
    Granja, Victoria
    Higgs, C. Fred, III
    PROCESSES, 2021, 9 (06)
  • [42] Disease Diagnosis of Dairy Cow by Deep Learning Based on Knowledge Graph and Transfer Learning
    Gao M.
    Wang H.
    Shen W.
    Su Z.
    Liu H.
    Yin Y.
    Zhang Y.
    Zhang Y.
    International Journal Bioautomation, 2021, 25 (01) : 87 - 100
  • [43] Knowledge graph and function block based Digital Twin modeling for robotic machining of large-scale components
    Zhang, Xuexin
    Zheng, Lianyu
    Fan, Wei
    Ji, Wei
    Mao, Lingjun
    Wang, Lihui
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 85
  • [44] Evaluation of Deep Learning-based prediction models in Microgrids
    Gyoeri, Alexey
    Niederau, Mathis
    Zeller, Violett
    Stich, Volker
    2019 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2019, : 95 - 99
  • [45] Deep Learning-Based Traffic Prediction for Network Optimization
    Troia, Sebastian
    Alvizu, Rodolfo
    Zhou, Youduo
    Maier, Guido
    Pattavina, Achille
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [46] Deep Learning-Based Driving Maneuver Prediction System
    Ou, Chaojie
    Karray, Fakhri
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 1328 - 1340
  • [47] A Survey of Deep Learning-Based Information Cascade Prediction
    Wang, Zhengang
    Wang, Xin
    Xiong, Fei
    Chen, Hongshu
    SYMMETRY-BASEL, 2024, 16 (11):
  • [48] Deep Learning-Based Defect Prediction for Mobile Applications
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (13)
  • [49] A deep learning-based framework for road traffic prediction
    Redouane Benabdallah Benarmas
    Kadda Beghdad Bey
    The Journal of Supercomputing, 2024, 80 : 6891 - 6916
  • [50] Deep learning-based damage detection of mining conveyor belt
    Zhang, Mengchao
    Shi, Hao
    Zhang, Yuan
    Yu, Yan
    Zhou, Manshan
    MEASUREMENT, 2021, 175