Experimental investigation of heat transfer enhancement, thermal efficiency, and pressure drop in forced convection of magnetic hybrid nanofluid (Fe3O4/TiO2) under varied magnetic field strengths and waveforms

被引:1
|
作者
Adogbeji, Victor O. [1 ]
Sharifpur, Mohsen [1 ,2 ,3 ]
Meyer, Josua P. [1 ,4 ]
机构
[1] Univ Pretoria, Dept Mech & Aeronaut Engn, Private Bag X20, ZA-0028 Pretoria, South Africa
[2] Univ Witwatersrand, Sch Mech Ind & Aeronaut Engn, Private Bag 3, ZA-2050 Johannesburg, South Africa
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Stellenbosch Univ, Dept Mech & Mechatron Engn, Stellenbosch, South Africa
关键词
Varied magnetic field strengths; Waveforms; Hybrid nanofluid; Heat transfer; Convective flow; Thermal efficiency; Pressure drop; Frequency optimization; Nanoparticle concentration; Turbulent forced convection; FLOW; CONSTANT; WATER;
D O I
10.1016/j.csite.2024.105313
中图分类号
O414.1 [热力学];
学科分类号
摘要
Applying a magnetic field to influence convective flow of ferrofluids has become an efficient method for enhancing heat transfer in thermal systems, particularly in straight tubes. This study investigates the heat transfer properties of Fe3O4/TiO2 nanofluids within a heated copper tube under varied magnetic field strengths and waveforms. Optimal magnetic field conditions were determined at 4 V and 60 Hz across all waveform types, as higher frequencies and voltages increased magnetic field intensity, thereby reducing heat transfer rates. Magnetic waveforms exerted differential influences on pressure drop, indicating varied nanoparticle alignment and turbulence levels, impacting fluid flow dynamics and viscosity. Higher nanoparticle concentration (0.1% vol) correlated with increased pressure drops across sine, square, and triangular waveforms, suggesting heightened flow resistance and potential nanoparticle agglomeration, thus reducing thermal efficiency. Conversely, lower concentrations exhibited enhanced thermal performance due to improved nanoparticle dispersion and reduced thermal resistance. At 0.1% vol, heat transfer enhancement without a magnetic field was 16.5%. The introduction of magnetic field waveforms attenuated this enhancement: 15.3% (sine), 13.26% (square), and 12.59% (triangular). Conversely, at lower volume fractions, heat transfer enhancements with magnetic fields exceeded those without at 0.05% vol, enhancements were 20.92% (sine), 21.3% (square), and 21.34% (triangular); at 0.025% vol, enhancements were 22.07% (sine), 22.3% (square), and 21.32% (triangular); at 0.0125% vol, enhancements were 27.87% (sine), 28.21% (square), and 26.74% (triangular); and at 0.0065% vol, enhancements were 22.24% (sine), 22.3% (square), and 24.49% (triangular).
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Experimental investigation into heat transfer and flow characteristics of magnetic hybrid nanofluid (Fe3O4/TiO2) in turbulent region
    Adogbeji, Victor O.
    Sharifpur, Mohsen
    Meyer, Josua P.
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [2] Experimental investigation of heat transfer, thermal efficiency, pressure drop, and flow characteristics of Fe3O4-MgO magnetic hybrid nanofluid in transitional flow regimes
    Adogbeji, Victor O.
    Sharifpur, Mohsen
    Meyer, Josua P.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 209
  • [3] Experimental and numerical investigation on forced convection heat transfer and pressure drop in helically coiled pipes using TiO2/water nanofluid
    Mahmoudi, Mostafa
    Tavakoli, Mohammad Reza
    Mirsoleimani, Mohamad Ali
    Gholami, Arash
    Salimpour, Mohammad Reza
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 74 : 627 - 643
  • [4] Magnetic effect on the enhancement of photo-thermal energy conversion efficiency of MWCNT/Fe3O4 hybrid nanofluid
    Shin, Yunchan
    Ham, Jeonggyun
    Boldoo, Tsogtbilegt
    Cho, Honghyun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 215
  • [5] Investigation on viscosity of Fe3O4 nanofluid under magnetic field
    Wang, Lijun
    Wang, Yongheng
    Yan, Xiaokang
    Wang, Xinyong
    Feng, Biao
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 72 : 23 - 28
  • [6] Experimental investigation of the photo-thermal conversion performance of Fe3O4 nanofluid under a magnetic field
    Boldoo, Tsogtbilegt
    Ham, Jeonggyun
    Cho, Honghyun
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2019, 16 (4-5) : 244 - 250
  • [7] Magnetic field effects on the thermal performance of Fe3O4 nanofluids in a forced convection system
    Kamyabi, Mohammadmahdi
    Hosseini, Seyed Mohammad Sadegh
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 611
  • [8] Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field
    Amani, Mohammad
    Ameri, Mohammad
    Kasaeian, Alibakhsh
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 82 : 439 - 449
  • [9] Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube
    Jalal Alsarraf
    Reza Rahmani
    Amin Shahsavar
    Masoud Afrand
    Somchai Wongwises
    Minh Duc Tran
    Journal of Thermal Analysis and Calorimetry, 2019, 137 : 1809 - 1825
  • [10] Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field
    Sha, Lili
    Ju, Yonglin
    Zhang, Hua
    Wang, Jingxin
    APPLIED THERMAL ENGINEERING, 2017, 113 : 566 - 574