共 29 条
- [21] Signoroni A., Savardi M., Benini S., Adami N., Leonardi R., Gibellini P., Vaccher F., Ravanelli M., Borghesi A., Maroldi R., Et al., Bs-net: Learning covid-19 pneumonia severity on a large chest x-ray dataset, Medical Image Analysis, 71, (2021)
- [22] Zhu J., Shen B., Abbasi A., Hoshmand-Kochi M., Li H., Duong T. Q., Deep transfer learning artificial intelligence accurately stages covid-19 lung disease severity on portable chest radiographs, PloS one, 15, 7, (2020)
- [23] Khan S. H., Sohail A., Zafar M. M., Khan A., Coronavirus disease analysis using chest x-ray images and a novel deep convolutional neural network, Photodiagnosis and Photodynamic Therapy, 35, (2021)
- [24] Irvin J., Rajpurkar P., Ko M., Yu Y., Ciurea-Ilcus S., Chute C., Marklund H., Haghgoo B., Ball R., Shpanskaya K., Et al., Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison, AAAI Conference on Artificial Intelligence, 33, pp. 590-597, (2019)
- [25] Perez L., Wang J., The effectiveness of data augmentation in image classification using deep learning, (2017)
- [26] He K., Zhang X., Ren S., Sun J., Deep residual learning for image recognition, IEEE conference on computer vision and pattern recognition, pp. 770-778, (2016)
- [27] Iandola F. N., Han S., Moskewicz M. W., Ashraf K., Dally W. J., Keutzer K., Squeezenet: Alexnetlevel accuracy with 50x fewer parameters and < 0.5 mb model size, (2016)
- [28] Huang G., Liu Z., Van Der Maaten L., Weinberger K. Q., Densely connected convolutional networks, the IEEE conference on computer vision and pattern recognition, pp. 4700-4708, (2017)
- [29] Ozturk T., Talo M., Yildirim E. A., Baloglu U. B., Yildirim O., Acharya U. R., Automated detection of covid-19 cases using deep neural networks with x-ray images, Computers in biology and medicine, 121, (2020)