Non-Abelian braiding in three-fold degenerate subspace and the acceleration

被引:0
|
作者
Liu, Hongzhi [1 ]
Huang, Jiayi [1 ]
Han, Zhiwei [1 ]
Liang, Jiahao [1 ]
Chen, Ziyuan [1 ]
Fu, Zhaoxin [1 ]
He, Zerui [1 ]
Ming, Yue [1 ]
Lv, Qingxian [1 ,2 ,3 ]
Du, Yanxiong [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Sch Phys, Key Lab Atom & Subatom Struct & Quantum Control, Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
POPULATION TRANSFER; ADIABATIC PASSAGE; ANYONS; ATOMS;
D O I
10.1364/JOSAB.533864
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-Abelian braiding operations of quantum states have attracted substantial attention due to their great potentials for realizing topological quantum computations. The adiabatic version of quantum braiding is robust against systematic errors, yet will suffer from decoherence and dephasing effects due to a long evolution time. In this paper, we propose to realize the braiding process in a three-fold degenerate subspace of a seven-level system, where the non-Abelian effect can be detected by changing the orders of the braiding. We accelerate the adiabatic control through adding auxiliary coupling terms according to a shortcut to adiabatic theory for the non-Abelian case. Furthermore, by generalizing the parallel adiabatic passages, adiabatic control can be accelerated through only reshaping the original control waveforms and the effective pulses area will be significantly reduced. Therefore, the proposed schemes may provide an experimentally feasible way to investigate the non-Abelian braiding in atomic systems and the waveguide systems. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:2366 / 2372
页数:7
相关论文
共 50 条
  • [1] Non-Abelian Braiding of Light
    Iadecola, Thomas
    Schuster, Thomas
    Chamon, Claudio
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [2] Shortcuts to non-Abelian braiding
    Karzig, Torsten
    Pientka, Falko
    Refael, Gil
    von Oppen, Felix
    PHYSICAL REVIEW B, 2015, 91 (20):
  • [3] Non-Abelian braiding on photonic chips
    Xu-Lin Zhang
    Feng Yu
    Ze-Guo Chen
    Zhen-Nan Tian
    Qi-Dai Chen
    Hong-Bo Sun
    Guancong Ma
    Nature Photonics, 2022, 16 : 390 - 395
  • [4] Non-Abelian braiding on photonic chips
    Zhang, Xu-Lin
    Yu, Feng
    Chen, Ze-Guo
    Tian, Zhen-Nan
    Chen, Qi-Dai
    Sun, Hong-Bo
    Ma, Guancong
    NATURE PHOTONICS, 2022, 16 (05) : 390 - +
  • [5] Non-Abelian Braiding of Lattice Bosons
    Kapit, Eliot
    Ginsparg, Paul
    Mueller, Erich
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [6] Braiding and Fusion of Non-Abelian Vortex Anyons
    Mawson, T.
    Petersen, T. C.
    Slingerland, J. K.
    Simula, T. P.
    PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [7] Classical non-Abelian braiding of acoustic modes
    Chen, Ze-Guo
    Zhang, Ruo-Yang
    Chan, C. T.
    Ma, Guancong
    NATURE PHYSICS, 2022, 18 (02) : 179 - +
  • [8] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [9] Classical non-Abelian braiding of acoustic modes
    Ze-Guo Chen
    Ruo-Yang Zhang
    C. T. Chan
    Guancong Ma
    Nature Physics, 2022, 18 : 179 - 184
  • [10] Quasiparticle operators with non-Abelian braiding statistics
    Cabra, DC
    Moreno, EF
    Rossini, GL
    PHYSICS LETTERS B, 1998, 437 (3-4) : 362 - 368