In-situ additive manufacturing with lunar regolith for lunar base construction: A review

被引:3
作者
Bao, Chengwei [1 ,2 ,3 ]
Wang, Yanen [1 ]
Pearce, Garth [2 ]
Mushtaq, Ray Tahir [1 ]
Liu, Minyan [1 ]
Zhao, Pan [3 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China
[2] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[3] Xian Mingde Inst Technol, Sch Intelligent Mfg & Control Technol, Xian 710124, Peoples R China
关键词
Space exploration; In-situ resource utilization; Lunar regolith; Additive manufacturing; Lunar resources; Lunar construction; RESOURCE UTILIZATION; MECHANICAL-BEHAVIOR; THERMAL-PROPERTIES; HE-3; DISTRIBUTION; SIZE DISTRIBUTION; PHYSICAL ASSETS; SIMULANT; CONCRETE; SOIL; GEOPOLYMER;
D O I
10.1016/j.apmt.2024.102456
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Construction of lunar bases is critical to further space exploration and decrease dependency on Earth-based resources. Abundant energy, water, and minerals on the Moon favor it as an ideal candidate for building extraterrestrial habitats. This paper discusses the feasibility of using in-situ resource utilization (ISRU) of lunar regolith (LR) for additively manufactured technologies for a lunar base. This work synthesizes current research in an overview at the intellectual level for the state-of-the-art methodologies of lunar regolith utilization in additive manufacturing (AM) processes. It makes a comparison of various techniques of AM, several kinds of materials, their maturity, and unique challenges of the lunar environment: extreme temperatures and microgravity. The review further discusses the impact of different types of post-processing treatments on the properties of LR-based materials and their applicability under real lunar conditions. These results allow the expectation of how AM technologies may work to provide a feasible and cost-effective construction process for the lunar base that will facilitate long-term space exploration missions.
引用
收藏
页数:26
相关论文
共 152 条
[61]  
Khoshnevis B., 2015, AIAA SPACE 2015 Conference and Exposition, Pasadena, DOI DOI 10.2514/6.2015-4450
[62]  
Khoshnevis B., 2012, Solid Freeform Fabrication Symposium, P250
[63]  
Khoshnevis M.T.B., 2012, CONTOUR CRAFTING SIMULATION PLAN FOR LUNAR SETTLEMENT INFRASTRUCTURE BUILD-UP, P1
[64]   Microstructural, mechanical, and thermal properties of microwave-sintered KLS-1 lunar regolith simulant [J].
Kim, Young-Jae ;
Ryu, Byung Hyun ;
Jin, Hyunwoo ;
Lee, Jangguen ;
Shin, Hyu-Soung .
CERAMICS INTERNATIONAL, 2021, 47 (19) :26891-26897
[65]   MINERALOGY AND PETROLOGY OF COARSE PARTICULATE MATERIAL FROM LUNAR SURFACE AT TRANQUILLITY-BASE [J].
KING, EA ;
CARMAN, MF ;
BUTLER, JC .
SCIENCE, 1970, 167 (3918) :650-&
[66]   Simultaneous Observation of Lunar Radar Sounder and Laser Altimeter of Kaguya for Lunar Regolith Layer Thickness Estimate [J].
Kobayashi, Takao ;
Kim, Jung Ho ;
Lee, Seung Ryeol ;
Araki, Hiroshi ;
Ono, Takayuki .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (03) :435-439
[67]   Thermal properties of lunar regolith simulant melting specimen [J].
Kost, Philipp-Marius ;
Linke, Stefan ;
Gundlach, Bastian ;
Lethuillier, Anthony ;
Baasch, Julian ;
Stoll, Enrico ;
Blum, Juergen .
ACTA ASTRONAUTICA, 2021, 187 :429-437
[68]   Additive manufacturing for a Moon village [J].
Labeaga-Martinez, N. ;
Sanjurjo-Rivo, M. ;
Diaz-Alvarez, J. ;
Martinez-Frias, J. .
MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE 2017 (MESIC 2017), 2017, 13 :794-801
[69]   Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructions [J].
Lauermannova, Anna-Marie ;
Faltysova, Ivana ;
Lojka, Michal ;
Antoncik, Filip ;
Sedmidubsky, David ;
Pavlik, Zbysek ;
Pavlikova, Milena ;
Zaleska, Martina ;
Pivak, Adam ;
Jankovsky, Ondrej .
FLATCHEM, 2021, 26
[70]   Bottom-up heating method for producing polyethylene lunar concrete in lunar environment [J].
Lee, Jaeho ;
Ann, Ki Yong ;
Lee, Tai Sik ;
Mitikie, Bahiru Bewket .
ADVANCES IN SPACE RESEARCH, 2018, 62 (01) :164-173