Automatic identification and classification of pediatric glomerulonephritis on ultrasound images based on deep learning and radiomics

被引:0
|
作者
Kou, Jun [1 ]
Li, Zuying [1 ]
You, Yazi [1 ]
Wang, Ruiqi [1 ]
Chen, Jingyu [1 ]
Tang, Yi [1 ]
机构
[1] Chongqing Med Univ, Childrens Hosp, Natl Clin Res Ctr Child Hlth & Disorders, Chongqing Key Lab Pediat Metab & Inflammatory Dis,, Chongqing 400010, Peoples R China
关键词
Glomerulonephritis; Pediatrics; Ultrasound; Deep learning; Radiomics; Classification; KIDNEY ALLOGRAFT; COMPLICATIONS; SEGMENTATION;
D O I
10.1186/s40537-024-01033-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
BackgroundGlomerulonephritis (GN) encompasses a heterogeneous group of kidney diseases, often presenting with subclinical manifestations in children, leading to frequent missed diagnoses. Renal biopsy, while considered the gold standard, is invasive, prone to sampling errors, and time-consuming, thus hindering rapid diagnosis. This study aimed to develop a noninvasive diagnostic model for childhood GN using renal ultrasound images through the integration of deep learning and radiomics techniques.MethodsUltrasound images were acquired from children undergoing ultrasound-guided biopsy. A total of 469 renal ultrasound images were selected and divided into training and validation sets at a ratio of 8:2 to train a U-Net model for precise kidney image segmentation. Using radiomics, a comprehensive set of radiomic features were extracted from the segmented kidney regions. The extracted features were categorized based on GN types: IgA nephropathy (127 cases), minimal change disease (83 cases), and Henoch-Sch & ouml;nlein purpura nephritis (103 cases). These categories were further randomly split into training and validation sets at a ratio of 8:2. Within the training set, analysis of variance (ANOVA) was used for feature selection, followed by supervised Least Absolute Shrinkage and Selection Operator (LASSO) regression for dimensionality reduction, resulting in the selection of 37 features. These features were then integrated with a random forest algorithm to develop a GN classification model. The model's performance was comprehensively evaluated using the validation set.ResultsThe segmentation model exhibited remarkable performance during training, achieving an accuracy of 95.19% in the validation set. Thirty-seven features were identified through feature selection, leading to the development of a robust classification model. Evaluation on the validation set revealed high accuracy and predictive power across different GN categories, with Area Under the Curve (AUC) values ranging from 0.91 to 0.98.ConclusionsThe combined use of deep learning and radiomics techniques utilizing renal ultrasound images demonstrates significant potential for classifying childhood GN subtypes. This noninvasive approach holds promise for improving diagnostic efficiency and patient outcomes in GN.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study
    Guan, Qing
    Wang, Yunjun
    Du, Jiajun
    Qin, Yu
    Lu, Hongtao
    Xiang, Jun
    Wang, Fen
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (07)
  • [32] Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion
    Jabeen, Kiran
    Khan, Muhammad Attique
    Alhaisoni, Majed
    Tariq, Usman
    Zhang, Yu-Dong
    Hamza, Ameer
    Mickus, Arturas
    Damasevicius, Robertas
    SENSORS, 2022, 22 (03)
  • [33] Lung cancer histology classification from CT images based on radiomics and deep learning models
    Panagiotis Marentakis
    Pantelis Karaiskos
    Vassilis Kouloulias
    Nikolaos Kelekis
    Stylianos Argentos
    Nikolaos Oikonomopoulos
    Constantinos Loukas
    Medical & Biological Engineering & Computing, 2021, 59 : 215 - 226
  • [34] Ultrasound images-based deep learning radiomics nomogram for preoperative prediction of RET rearrangement in papillary thyroid carcinoma
    Yu, Jialong
    Zhang, Yihan
    Zheng, Jian
    Jia, Meng
    Lu, Xiubo
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [35] Lung cancer histology classification from CT images based on radiomics and deep learning models
    Marentakis, Panagiotis
    Karaiskos, Pantelis
    Kouloulias, Vassilis
    Kelekis, Nikolaos
    Argentos, Stylianos
    Oikonomopoulos, Nikolaos
    Loukas, Constantinos
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (01) : 215 - 226
  • [36] A deep learning based approach for classification of abdominal organs using ultrasound images
    Reddy, D. Santhosh
    Rajalakshmi, P.
    Mateen, M. A.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 779 - 791
  • [37] Automatic Identification of Ultrasound Images of the Tibial Nerve in Different Ankle Positions Using Deep Learning
    Kawanishi, Kengo
    Kakimoto, Akihiro
    Anegawa, Keisuke
    Tsutsumi, Masahiro
    Yamaguchi, Isao
    Kudo, Shintarou
    SENSORS, 2023, 23 (10)
  • [38] Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning
    Yang, Yiru
    Wu, Bingzheng
    Wu, Huiling
    Xu, Wu
    Lyu, Guorong
    Liu, Peizhong
    He, Shaozheng
    JOURNAL OF PERINATAL MEDICINE, 2023, 51 (08) : 1052 - 1058
  • [39] A review of deep learning segmentation methods for carotid artery ultrasound images
    Huang, Qinghua
    Tian, Haozhe
    Jia, Lizhi
    Li, Ziming
    Zhou, Zishu
    NEUROCOMPUTING, 2023, 545
  • [40] Automatic identification of myopia based on ocular appearance images using deep learning
    Yang, Yahan
    Li, Ruiyang
    Lin, Duoru
    Zhang, Xiayin
    Li, Wangting
    Wang, Jinghui
    Guo, Chong
    Li, Jianyin
    Chen, Chuan
    Zhu, Yi
    Zhao, Lanqin
    Lin, Haotian
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)