Topological properties of single-particle states decaying into a continuum due to interaction

被引:0
作者
Hawashin, B. [1 ,2 ]
Sirker, J. [2 ]
Uhrig, G. S. [1 ]
机构
[1] TU Dortmund Univ, Condensed Matter Theory, Dept Phys, D-44221 Dortmund, Germany
[2] Univ Manitoba, Manitoba Quantum Inst, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
STATISTICAL-MECHANICS; QUANTUM SIMULATIONS; THERMALIZATION; BENCHMARKING; CHAOS;
D O I
10.1103/PhysRevResearch.6.L042041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate how topological Chern numbers can be defined when single-particle states hybridize with continua. We do so exemplarily in a bosonic Haldane model at zero temperature with an additional on-site decay of one boson into two and the conjugate fusion of two bosons into one. Restricting the Hilbert space to two bosons at maximum, the exact self-energy is accessible. We use the bilinear Hamiltonian H0 corrected by the self-energy E to compute Chern numbers by two different approaches. The results are gauged against a full many-body calculation in the Hilbert space where possible. We establish numerically and analytically that the effective Hamiltonian Heff =H0((k) over right arrow) + E(w, (k) over right arrow) reproduces the correct many-body topology if the considered band does not overlap with the continuum. In case of overlaps, one can extend the definition of the Chern number to the non-Hermitian Heff and there is evidence that the Chern number changes at exceptional points. But the bulk-boundary correspondence appears to be no longer valid and edge modes delocalize.
引用
收藏
页数:6
相关论文
共 57 条
[31]  
Madhusudhana B. H., arXiv
[32]  
Madhusudhana BH, 2023, Arxiv, DOI arXiv:2301.07109
[33]   Benchmarking a Novel Efficient Numerical Method for Localized 1D Fermi-Hubbard Systems on a Quantum Simulator [J].
Madhusudhana, Bharath Hebbe ;
Scherg, Sebastian ;
Kohlert, Thomas ;
Bloch, Immanuel ;
Aidelsburger, Monika .
PRX QUANTUM, 2021, 2 (04)
[34]   Scalable and Robust Randomized Benchmarking of Quantum Processes [J].
Magesan, Easwar ;
Gambetta, J. M. ;
Emerson, Joseph .
PHYSICAL REVIEW LETTERS, 2011, 106 (18)
[35]   Benchmarking Quantum Simulators Using Ergodic Quantum Dynamics [J].
Mark, Daniel K. ;
Choi, Joonhee ;
Shaw, Adam L. ;
Endres, Manuel ;
Choi, Soonwon .
PHYSICAL REVIEW LETTERS, 2023, 131 (11)
[36]  
McLeod R. M., 1965, P EDINBURGH MATH SOC, V14, P197, DOI DOI 10.1017/S0013091500008786
[37]   Programmable quantum simulations of spin systems with trapped ions [J].
Monroe, C. ;
Campbell, W. C. ;
Duan, L-M ;
Gong, Z-X ;
Gorshkov, A., V ;
Hess, P. W. ;
Islam, R. ;
Kim, K. ;
Linke, N. M. ;
Pagano, G. ;
Richerme, P. ;
Senko, C. ;
Yao, N. Y. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[38]   Signatures of Open and Noisy Quantum Systems in Single-Qubit Quantum Annealing [J].
Morrell, Zachary ;
Vuffray, Marc ;
Lokhov, Andrey Y. ;
Bartschi, Andreas ;
Albash, Tameem ;
Coffrin, Carleton .
PHYSICAL REVIEW APPLIED, 2023, 19 (03)
[39]   Gate Set Tomography [J].
Nielsen, Erik ;
Gamble, John King ;
Rudinger, Kenneth ;
Scholten, Travis ;
Young, Kevin ;
Blume-Kohout, Robin .
QUANTUM, 2021, 5
[40]   A Universal Operator Growth Hypothesis [J].
Parker, Daniel E. ;
Cao, Xiangyu ;
Avdoshkin, Alexander ;
Scaffidi, Thomas ;
Altman, Ehud .
PHYSICAL REVIEW X, 2019, 9 (04)