Topological properties of single-particle states decaying into a continuum due to interaction

被引:0
作者
Hawashin, B. [1 ,2 ]
Sirker, J. [2 ]
Uhrig, G. S. [1 ]
机构
[1] TU Dortmund Univ, Condensed Matter Theory, Dept Phys, D-44221 Dortmund, Germany
[2] Univ Manitoba, Manitoba Quantum Inst, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
STATISTICAL-MECHANICS; QUANTUM SIMULATIONS; THERMALIZATION; BENCHMARKING; CHAOS;
D O I
10.1103/PhysRevResearch.6.L042041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate how topological Chern numbers can be defined when single-particle states hybridize with continua. We do so exemplarily in a bosonic Haldane model at zero temperature with an additional on-site decay of one boson into two and the conjugate fusion of two bosons into one. Restricting the Hilbert space to two bosons at maximum, the exact self-energy is accessible. We use the bilinear Hamiltonian H0 corrected by the self-energy E to compute Chern numbers by two different approaches. The results are gauged against a full many-body calculation in the Hilbert space where possible. We establish numerically and analytically that the effective Hamiltonian Heff =H0((k) over right arrow) + E(w, (k) over right arrow) reproduces the correct many-body topology if the considered band does not overlap with the continuum. In case of overlaps, one can extend the definition of the Chern number to the non-Hermitian Heff and there is evidence that the Chern number changes at exceptional points. But the bulk-boundary correspondence appears to be no longer valid and edge modes delocalize.
引用
收藏
页数:6
相关论文
共 57 条
[1]   Learning a Local Hamiltonian from Local Measurements [J].
Bairey, Eyal ;
Arad, Itai ;
Lindner, Netanel H. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)
[2]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[3]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   Schrieffer-Wolff transformation for quantum many-body systems [J].
Bravyi, Sergey ;
DiVincenzo, David P. ;
Loss, Daniel .
ANNALS OF PHYSICS, 2011, 326 (10) :2793-2826
[6]   Theoretical and Experimental Perspectives of Quantum Verification [J].
Carrasco, Jose ;
Elben, Andreas ;
Kokail, Christian ;
Kraus, Barbara ;
Zoller, Peter .
PRX QUANTUM, 2021, 2 (01)
[7]   Preparing random states and benchmarking with many-body quantum chaos [J].
Choi, Joonhee ;
Shaw, Adam L. L. ;
Madjarov, Ivaylo S. S. ;
Xie, Xin ;
Finkelstein, Ran ;
Covey, Jacob P. P. ;
Cotler, Jordan S. S. ;
Mark, Daniel K. K. ;
Huang, Hsin-Yuan ;
Kale, Anant ;
Pichler, Hannes ;
Brandao, Fernando G. S. L. ;
Choi, Soonwon ;
Endres, Manuel .
NATURE, 2023, 613 (7944) :468-+
[8]   Emergent Quantum State Designs from Individual Many-Body Wave Functions [J].
Cotler, Jordan S. ;
Mark, Daniel K. ;
Huang, Hsin-Yuan ;
Hernandez, Felipe ;
Choi, Joonhee ;
Shaw, Adam L. ;
Endres, Manuel ;
Choi, Soonwon .
PRX QUANTUM, 2023, 4 (01)
[9]   Energy-level splitting for weakly interacting bosons in a harmonic trap [J].
Craps, Ben ;
De Clerck, Marine ;
Evnin, Oleg ;
Khetrapal, Surbhi .
PHYSICAL REVIEW A, 2019, 100 (02)
[10]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362