Optimally Suppressed Phonon Tunneling in van der Waals Graphene-WS2 Heterostructure with Ultralow Thermal Conductivity

被引:2
作者
Ding, Wenyang [1 ]
Ong, Zhun-Yong [2 ]
An, Meng [1 ]
Davier, Brice [1 ]
Hu, Shiqian [3 ]
Ohnishi, Masato [1 ]
Shiomi, Junichiro [1 ,4 ]
机构
[1] Univ Tokyo, Dept Mech Engn, Tokyo 1138656, Japan
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[3] Yunnan Univ, Sch Phys & Astron, Kunming 650091, Peoples R China
[4] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
van der Waals heterostructure; thermal transport; incident angle; phonon tunneling; HEAT-CONDUCTION; TRANSPORT; TRANSITION; SIMULATION;
D O I
10.1021/acs.nanolett.4c03930
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Van der Waals heterostructures have great potential for realizing ultimately low thermal conductivity because defectless interfaces can be constructed at a length scale smaller than the phonon wavelength, allowing modulation of coherent phonon transport. In this Letter, we demonstrate the mechanism for thermal conductivity reduction at a mode-resolved level. The graphene-WS2 heterostructure with the lowest cross-plane thermal conductivity of 0.048 W/(m<middle dot>K) is identified from 16,384 candidates by combining Bayesian optimization and molecular dynamics simulations. Then, the angle-resolved phonon transmission is calculated using the mode-resolved atomistic Green's function. The results reveal that the optimal heterostructure nearly completely terminates phonon transport with finite incident angles, owing to the reduced critical incident angle and suppression of phonon tunneling.
引用
收藏
页码:13754 / 13759
页数:6
相关论文
共 50 条
[21]   Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure [J].
Zhang, Xin-Wu ;
He, Da-Wei ;
He, Jia-Qi ;
Zhao, Si-Qi ;
Hao, Sheng-Cai ;
Wang, Yong-Sheng ;
Yi, Li-Xin .
CHINESE PHYSICS B, 2017, 26 (09)
[22]   Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential [J].
Li, Wentao ;
Yang, Chenxiu .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (50)
[23]   Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures [J].
Yang, Youzhe ;
Ma, Jun ;
Yang, Jie ;
Zhang, Yingyan .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (40) :45742-45751
[24]   Layer dependency of in-plane thermal conductivity in graphene/hBN van der Waals heterostructures: a molecular dynamics study [J].
Chen, Zehua ;
Wang, Kefeng ;
Hao, Zhao ;
Ren, Kailin ;
Yin, Luqiao ;
Guo, Aiying ;
Zhang, Jianhua ;
Lu, Xiuzhen .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10)
[25]   The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure [J].
Ren, Weijun ;
Ouyang, Yulou ;
Jiang, Pengfei ;
Yu, Cuiqian ;
He, Jia ;
Chen, Jie .
NANO LETTERS, 2021, 21 (06) :2634-2641
[26]   Broadband Photodetector Based on FePS3/WS2 van der Waals Type II Heterostructure [J].
Cao, Xinyu ;
Yan, Shaohua ;
Li, Zhiteng ;
Fang, Zhenghui ;
Wang, Lin ;
Liu, Xiaofeng ;
Chen, Zhengwei ;
Lei, Hechang ;
Zhang, Xiao .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (50) :11529-11535
[27]   WS2/BSe van der Waals type-II heterostructure as a promising water splitting photocatalyst [J].
Zhang, Dingbo ;
Zhou, Zhongpo ;
Hue, Yue ;
Yang, Zongxian .
MATERIALS RESEARCH EXPRESS, 2019, 6 (03)
[28]   Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films [J].
Park, Kyeong Hyun ;
Mohamed, Mohamed ;
Aksamija, Zlatan ;
Ravaioli, Umberto .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (01)
[29]   Ultralow Power Optoelectronic Memtransistors Based on Vertical WS2/In2Se3 van der Waals Heterostructures [J].
Ma, Xiudong ;
Zhou, Yumeng ;
Li, Ru ;
Zhao, Shangzhou ;
Zhang, Mingjia .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (12) :18582-18591
[30]   Lateral and flexural thermal transport in stanene/2D-SiC van der Waals heterostructure [J].
Ahammed, Shihab ;
Islam, Md Sherajul ;
Mia, Imon ;
Park, Jeongwon .
NANOTECHNOLOGY, 2020, 31 (50)