Steering Electrochemical CO2 Reduction Selectivity toward CH4 or C2H4 on N-Doped Carbon-Coated Cu/Cu2O Composite Catalysts

被引:3
|
作者
Li, Feifei [1 ]
Tariq, Hossain [1 ]
Yang, Huaqian [1 ]
Cao, Yuyang [1 ]
Zhou, Tang [1 ]
Wang, Gongwei [2 ]
机构
[1] Wuhan Inst Technol, Sch Mat Sci & Engn, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Hubei, Peoples R China
来源
ACS CATALYSIS | 2024年 / 14卷 / 20期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CO2; reduction; methane; ethylene; copper; cuprous oxide; carbon coating; CU; CONVERSION; ELECTROREDUCTION; PRODUCTS; OPERANDO; DIOXIDE; SURFACE;
D O I
10.1021/acscatal.4c04589
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the catalytic mechanism is crucial for the rational design of efficient catalysts. However, the dynamic reconstruction of copper (Cu) catalysts under harsh electrochemical CO2 reduction reaction (CO2RR) conditions poses great challenges for studying the mechanism. Herein, we prepared a series of N-doped carbon-coated Cu/Cu2O composite catalysts with varying Cu/Cu2O ratios and N-doping levels by annealing copper acetylacetonate (Cu(acac)(2)) with different amounts of potassium nitrate (KNO3), which can steer CO2RR toward either CH4 or C2+ (mainly C2H4) production. The in situ formed carbon layer effectively stabilized the Cu catalyst structures under cathode potentials, facilitating mechanistic studies of CO2RR. Through CO temperature-programmed desorption (TPD) and in situ infrared spectroscopy characterizations, it is revealed that the coexistence of Cu-0 and Cu+ sites promoted the generation of a high-coverage, strongly adsorbed *CO intermediate on the catalytic surface, thereby enhancing C-C coupling to generate C2+ products. Conversely, the surface with only Cu-0 sites exhibited a low-coverage and weakly adsorbed *CO, benefiting its hydrogenation/deoxygenation toward CH4 production.
引用
收藏
页码:15088 / 15095
页数:8
相关论文
共 50 条
  • [21] Promoting Electrocatalytic Reduction of CO2 to C2H4 Production by Inhibiting C2H5OH Desorption from Cu2O/C Composite
    Gao, Yugang
    Yu, Shiqiang
    Zhou, Peng
    Ren, Xixi
    Wang, Zeyan
    Zheng, Zhaoke
    Wang, Peng
    Cheng, Hefeng
    Liu, Yuanyuan
    Wei, Wei
    Dai, Ying
    Huang, Baibiao
    SMALL, 2022, 18 (09)
  • [22] Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO2 Reduction with Tunable C2H4/CH4 Selectivity
    Zhuo, Lin-Ling
    Chen, Pin
    Zheng, Kai
    Zhang, Xue-Wen
    Wu, Jun-Xi
    Lin, Duo-Yu
    Liu, Si-Yang
    Wang, Zhi-Shuo
    Liu, Jin-Yu
    Zhou, Dong-Dong
    Zhang, Jie-Peng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (28)
  • [23] High activity and CH4 selectivity for photocatalytic CO2 reduction by Cu modified C3N4 nanotubes
    Liu, Ye
    Zhang, Lei
    Kuang, Yubo
    Xiang, Xiaoqian
    Tao, Haohan
    Di, Guangran
    Yin, Xiaojing
    Li, Meicheng
    Lv, Xiao-Jun
    CHEMICAL PHYSICS LETTERS, 2024, 842
  • [24] Roughness Effect of Cu on Electrocatalytic CO2 Reduction towards C2H4
    Jiang, Yong
    Zhong, Dazhong
    Wang, Lei
    Li, Jiayuan
    Hao, Genyan
    Li, Jinping
    Zhao, Qiang
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (14)
  • [25] Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4
    Tang, Zhiling
    He, Wenjie
    Wang, Yingli
    Wei, Yuechang
    Yu, Xiaolin
    Xiong, Jing
    Wang, Xiong
    Zhang, Xiao
    Zhao, Zhen
    Liu, Jian
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 311
  • [26] Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets
    Xie, Huan
    Xie, Ruikuan
    Zhang, Zhiyuan
    Pang, Yongyu
    Luo, Yuting
    Li, Jiong
    Liu, Bilu
    Titirici, Maria -Magdalena
    Chai, Guoliang
    JOURNAL OF ENERGY CHEMISTRY, 2023, 79 : 312 - 320
  • [27] Structural Reconstruction of Cu2O Superparticles toward Electrocatalytic CO2 Reduction with High C2+ Products Selectivity
    Jiang, Yawen
    Wang, Xinyu
    Duan, Delong
    He, Chaohua
    Ma, Jun
    Zhang, Wenqing
    Liu, Hengjie
    Long, Ran
    Li, Zibiao
    Kong, Tingting
    Loh, Xian Jun
    Song, Li
    Ye, Enyi
    Xiong, Yujie
    ADVANCED SCIENCE, 2022, 9 (16)
  • [28] Enhancing CO2 electroreduction to CH4 over Cu nanoparticles supported on N-doped carbon
    Wu, Yahui
    Chen, Chunjun
    Yan, Xupeng
    Wu, Ruizhi
    Liu, Shoujie
    Ma, Jun
    Zhang, Jianling
    Liu, Zhimin
    Xing, Xueqing
    Wu, Zhonghua
    Han, Buxing
    CHEMICAL SCIENCE, 2022, 13 (28) : 8388 - 8394
  • [29] Nanoconfinement Effects of Yolk-Shell Cu2O Catalyst for Improved C2+ Selectivity and Cu+ Stability in Electrocatalytic CO2 Reduction
    Lu, Jinghao
    Yang, Lili
    Zhang, Yishuai
    Wang, Chao
    Zhang, Chuanhui
    Zhao, Xiu Song
    ACS APPLIED NANO MATERIALS, 2023, 6 (22) : 20746 - 20756
  • [30] Introducing La into a Customized Dual Cu Covalent Organic Framework to Steer CO2 Electroreduction Selectivity from C2H4 to CH4
    Dong, Xiao-Yu
    Chen, Hong
    Wang, Shan
    Zou, Ru-Yi
    Zang, Shuang-Quan
    Cai, Jinmeng
    ADVANCED MATERIALS, 2025, 37 (06)