Joint Energy and Carbon Trading for Multi-Microgrid System Based on Multi-Agent Deep Reinforcement Learning

被引:5
|
作者
Zhou, Yanting [1 ]
Ma, Zhongjing [1 ]
Wang, Tianyu [1 ]
Zhang, Jinhui [1 ]
Shi, Xingyu [2 ]
Zou, Suli [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
deep reinforcement learning; energy management; Carbon trading; local energy trading; multi-agent; MODEL;
D O I
10.1109/TPWRS.2024.3380070
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Carbon trading has emerged as an effective way to promote the renewable generation and sustainable energy development. Since carbon emissions are closely coupled to energy system, it is a challenge to design a market mechanism for joint energy and carbon trading to achieve better strategies. In this study, the energy management problem with a specific focus on joint trading in multi-microgrid system is investigated by utilizing a multi-agent deep reinforcement learning approach. Initially, a joint energy and carbon trading market is established and the dispatch optimization problem is formulated as a Markov decision process without modeling uncertainties accurately. This mechanism enables direct one-to-one energy transactions among all areas, avoiding the market clearing in traditional multi-party local energy trading markets. To enhance the learning efficiency and maintain agent privacy, an enhanced multi-agent proximal policy optimization (MAPPO) algorithm that incorporates a parameter sharing mechanism is introduced. Moreover, the recurrent neural networks (RNN) structure is leveraged to perform feature encoding for individual agents, which improves the overall feature extraction capability. Through comprehensive experiments involving various algorithms, the proposed approach reduce operating costs 14.86 \% and carbon emissions 19.04 $\%$ compared with traditional MAPPO, which validates the effectiveness and performance benefits.
引用
收藏
页码:7376 / 7388
页数:13
相关论文
共 50 条
  • [31] A survey of multi-agent deep reinforcement learning with communication
    Zhu, Changxi
    Dastani, Mehdi
    Wang, Shihan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2024, 38 (01)
  • [32] Experience Selection in Multi-Agent Deep Reinforcement Learning
    Wang, Yishen
    Zhang, Zongzhang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 864 - 870
  • [33] Multi-Agent Deep Reinforcement Learning in Vehicular OCC
    Islam, Amirul
    Musavian, Leila
    Thomos, Nikolaos
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [34] Teaching on a Budget in Multi-Agent Deep Reinforcement Learning
    Ilhan, Ercument
    Gow, Jeremy
    Perez-Liebana, Diego
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [35] Macro-Action-Based Deep Multi-Agent Reinforcement Learning
    Xiao, Yuchen
    Hoffman, Joshua
    Amato, Christopher
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [36] Multi-Agent Reinforcement Learning-Based Joint Caching and Routing in Heterogeneous Networks
    Yang, Meiyi
    Gao, Deyun
    Foh, Chuan Heng
    Quan, Wei
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (05) : 1959 - 1974
  • [37] Hierarchical Cooperative Dispatching Strategy of Multi-microgrid and Distribution Networks Based on Multi-agent Algorithm
    Chen C.
    Miao S.
    Yao F.
    Wang T.
    Wang J.
    Wei W.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (10): : 57 - 65
  • [38] Multi-Agent Deep Reinforcement Learning Based Distributed Resource Allocation
    Urmonov, Odilbek
    Kim, HyungWon
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [39] Multi-agent Collaborative Fire Rescue Based on Deep Reinforcement Learning
    Feng, Yiming
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1317 - 1321
  • [40] A multi-agent deep reinforcement learning based energy management for behind-the-meter resources
    Wilk, Patrick
    Wang, Ning
    Li, Jie
    ELECTRICITY JOURNAL, 2022, 35 (05)