Gravure-Printed Anodes Based on Hard Carbon for Sodium-Ion Batteries

被引:0
|
作者
Montanino, Maria [1 ]
Paoletti, Claudia [2 ]
De Girolamo Del Mauro, Anna [1 ]
Sico, Giuliano [1 ]
机构
[1] ENEA Italian Natl Agcy New Technol Energy & Sustai, Port Res Ctr, Piazzale E Fermi 1, I-80055 Portici, Italy
[2] ENEA Italian Natl Agcy New Technol Energy & Sustai, via Anguillarese 301, I-00123 Rome, Italy
来源
BATTERIES-BASEL | 2024年 / 10卷 / 11期
关键词
printed batteries; sodium-ion batteries; hard carbon; gravure printing; capillary number; anodes; anodic active materials;
D O I
10.3390/batteries10110407
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Printed batteries are increasingly being investigated for feeding small, wearable devices more and more involved in our daily lives, promoting the study of printing technologies. Among these, gravure is very attractive as a low-cost and low-waste production method for functional layers in different fields, such as energy, sensors, and biomedical, because it is easy to scale up industrially. Thanks to our research, the feasibility of gravure printing was recently proved for rechargeable lithium-ion batteries (LiBs) manufacturing. Such studies allowed the production of high-quality electrodes involving different active materials with high stability, reproducibility, and good performance. Going beyond lithium-based storage devices, our attention was devoted on the possibility of employing highly sustainable gravure printing for sodium-ion batteries (NaBs) manufacturing, following the trendy interest in sodium, which is more abundant, economical, and ecofriendly than lithium. Here a study on gravure printed anodes for sodium-ion batteries based on hard carbon as an active material is presented and discussed. Thanks to our methodology centered on the capillary number, a high printing quality anodic layer was produced providing typical electrochemical behavior and good performance. Such results are very innovative and relevant in the field of sodium-ion batteries and further demonstrate the high potential of gravure in printed battery manufacturing.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optimizing nitrogen-doped bamboo-derived hard carbon as anodes of sodium-ion batteries
    Wang, J. D.
    Kuai, J.
    Xie, J.
    Qiu, T.
    Wang, J.
    Li, A. L.
    Liu, F.
    Cheng, J. P.
    DIAMOND AND RELATED MATERIALS, 2025, 153
  • [22] Structural and Electrochemical Properties of Musa acuminata Fiber Derived Hard Carbon as Anodes of Sodium-Ion Batteries
    Thenappan, Meenatchi
    Mathiyalagan, Kouthaman
    Abdollahifar, Mozaffar
    Rengapillai, Subadevi
    Marimuthu, Sivakumar
    ENERGIES, 2023, 16 (02)
  • [23] Nickel-templated carbon foam anodes for sodium-ion batteries
    Zeng, Jinjue
    Wang, Tao
    Gu, Xianrui
    Zhu, Hongda
    Xu, Chiwei
    Sun, Dandan
    Ge, Cong
    Ding, Rui
    Li, Jia
    Liu, Jianguo
    Rong, Junfeng
    Wang, Xuebin
    Jiang, Xiangfen
    FLATCHEM, 2023, 40
  • [24] Transformative Catalytic Carbon Conversion Enabling Superior Graphitization and Nanopore Engineering in Hard Carbon Anodes for Sodium-Ion Batteries
    Zhang, Guilai
    Gao, Hong
    Zhang, Dingyi
    Xiao, Jun
    Sun, Limeng
    Li, Jiayi
    Li, Congcong
    Sun, Yiwen
    Yuan, Xinyao
    Huang, Peng
    Xu, Yi
    Guo, Xin
    Zhao, Yufei
    Wang, Yong
    Xiao, Yao
    Wang, Guoxiu
    Liu, Hao
    CARBON ENERGY, 2025,
  • [25] An Attempt to Improve Electrochemical Performances of Lignin-Based Hard Carbon Microspheres Anodes in Sodium-Ion Batteries by Using Hexamethylenetetramine
    Yu, Xiaochen
    Yu, Baojun
    Zhang, Jie
    Zhang, Yang
    Zeng, Jingxuan
    Chen, Mingming
    Wang, Chengyang
    CHEMISTRYSELECT, 2018, 3 (33): : 9518 - 9525
  • [26] Synthesis strategies and obstacles of lignocellulose-derived hard carbon anodes for sodium-ion batteries
    Zhang W.
    Huang Z.
    Alshareef H.N.
    Qiu X.
    Carbon Research, 2024, 3 (01):
  • [27] Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin
    Meng, Qingwei
    Chen, Binyi
    Jian, Wenbin
    Zhang, Xiaoshan
    Sun, Shirong
    Wang, Tiejun
    Zhang, Wenli
    JOURNAL OF POWER SOURCES, 2023, 581
  • [28] Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries
    Cao, Liyun
    Hui, Wenle
    Xu, Zhanwei
    Huang, Jianfeng
    Zheng, Peng
    Li, Jiayin
    Sun, Qianqian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 632 - 637
  • [29] Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
    Rios, Carolina del Mar Saavedra
    Simone, Virginie
    Simonin, Loic
    Martinet, Sebastien
    Dupont, Capucine
    BIOMASS & BIOENERGY, 2018, 117 : 32 - 37
  • [30] Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries
    Wan, Yanhua
    Liu, Yao
    Chao, Dongliang
    Li, Wei
    Zhao, Dongyuan
    NANO MATERIALS SCIENCE, 2023, 5 (02) : 189 - 201