Quantifying the Effect of Land Use and Land Cover Changes on Spatial-Temporal Dynamics of Water in Hanjiang River Basin

被引:0
作者
Xi, Hao [1 ]
Yuan, Yanbin [1 ]
Dong, Heng [1 ]
Zhang, Xiaopan [1 ]
机构
[1] Wuhan Univ Technol, Sch Resource & Environm Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-source remote sensing; LUCC; water supply and demand risk; SSP-RCP; multi-scenario projection; MODEL;
D O I
10.3390/rs16224136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a vital part of the geo-environment and water cycle, ecosystem health and human development are dependent on water resources. Water supply and demand are influenced significantly by land use and cover change (LUCC) which shapes the surface ecosystems by altering their structure and function. Under future climate change scenarios, LUCC may greatly impact regional water balance, yet the impact is still not well understood. Therefore, examining the spatial relationship between LUCC and water yield services is crucial for optimizing land resources and informing sustainable development policies. In this study, we focused on the Hanjiang River Basin and used the patch-generating land use simulation (PLUS) model, coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, to assess water yield services under three Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios. For the first time, we considered the impact of future changes in socio-economic and water use indicators on water demand using correction factors and ARIMA projections. The relationship between water supply and demand was explored using this approach, and LUCC's effects on this balance are also discussed. Results indicate that: (1) The patterns of LUCC are similar for the three scenarios from 2030 to 2050, with varying levels of decrease for cropland and significant growth of built-up areas, with increases of 6.77% to 19.65% (SSP119), 7.66% to 22.65% (SSP245), and 15.88% to 46.69% (SSP585), respectively, in the three scenarios relative to 2020; (2) The future supply and demand trends for the three scenarios of produced water services are similar, and the overall supply and demand risks are all on a downward trend. Water demand continues to decline, and by 2050, the water demand of the 3 scenarios will decrease by 96.275x108t, 81.210x108t, and 84.13x108t relative to 2020, respectively; while supply decreases from 2030 to 2040 and rises from 2040 to 2050; (3) Both water supply and demand distributions exhibit spatial correlation, and the distribution of hotspots is similar. The water supply and demand are well-matched, with an overall supply-demand ratio greater than 1.5; (4) LUCC can either increase or decrease water yield. Built-up land provides more water supply compared to other land types, while forest land has the lowest average water supply. Limiting land use type conversions can enhance the water supply.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Hydrological response to future changes in climate and land use/land cover in the Hanjiang River Basin
    Yang, Liu
    Xu, Yanqi
    Cao, Qian
    Niu, Zigeng
    Luo, Zengliang
    Wang, Lunche
    NATURAL HAZARDS, 2024, : 4803 - 4836
  • [2] Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin
    Tian J.
    Guo S.
    Liu D.
    Chen Q.
    Wang Q.
    Yin J.
    Wu X.
    He S.
    Dili Xuebao/Acta Geographica Sinica, 2020, 75 (11): : 2307 - 2318
  • [3] Effect of land use land cover changes on hydrological response of Punpun River basin
    Ranjan, Shashi
    Singh, Vivekanand
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (09)
  • [4] Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan
    Saddique, Naeem
    Mahmood, Talha
    Bernhofer, Christian
    ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (19)
  • [5] Spatial-temporal patterns of urban expansion by land use/land cover transfer in China
    Wang, Chengyuan
    Liu, Shenghui
    Zhou, Shuo
    Zhou, Jian
    Jiang, Shichao
    Zhang, Yongkang
    Feng, Tiantian
    Zhang, Hanliang
    Zhao, Yuhang
    Lai, Zhaoquan
    Cui, Shuai
    Mao, Xuegang
    ECOLOGICAL INDICATORS, 2023, 155
  • [6] Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China
    Tian, Jing
    Guo, Shenglian
    Yin, Jiabo
    Pan, Zhengke
    Xiong, Feng
    He, Shaokun
    FRONTIERS OF EARTH SCIENCE, 2022, 16 (03) : 711 - 733
  • [7] Quantifying both climate and land use/cover changes on runoff variation in Han River basin,China
    Jing TIAN
    Shenglian GUO
    Jiabo YIN
    Zhengke PAN
    Feng XIONG
    Shaokun HE
    Frontiers of Earth Science, 2022, 16 (03) : 711 - 733
  • [8] Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China
    Jing Tian
    Shenglian Guo
    Jiabo Yin
    Zhengke Pan
    Feng Xiong
    Shaokun He
    Frontiers of Earth Science, 2022, 16 : 711 - 733
  • [9] Spatial-temporal variation of land use and land cover change in the glacial affected area of the Tianshan Mountains
    Wei, Hong
    Xiong, Liyang
    Tang, Guoan
    Strobl, Josef
    Xue, Kaikai
    CATENA, 2021, 202
  • [10] The impact of land use and land cover changes on runoff in a semi-arid river basin
    Zhang, Wei
    Ren, Liliang
    Yang, Xiaoli
    Jiang, Shanhu
    HYDROLOGICAL CYCLE AND WATER RESOURCES SUSTAINABILITY IN CHANGING ENVIRONMENTS, 2011, 350 : 38 - 44