A Parrondo paradox in susceptible-infectious-susceptible dynamics over periodic temporal networks

被引:0
作者
Sejunti, Maisha Islam [1 ]
Taylor, Dane [2 ,3 ]
Masuda, Naoki [1 ,4 ,5 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[2] Univ Wyoming, Sch Comp, Laramie, WY 82071 USA
[3] Univ Wyoming, Dept Math & Stat, Laramie, WY 82071 USA
[4] SUNY Buffalo, Inst Artificial Intelligence & Data Sci, Buffalo, NY 14260 USA
[5] Kobe Univ, Ctr Computat Social Sci, Kobe 6578501, Japan
基金
日本科学技术振兴机构; 美国国家科学基金会;
关键词
Temporal network; SIS model; Epidemic threshold; Floquet theory; Anti-phase oscillation; SYSTEMS; CONTROLLABILITY; STABILIZATION; EPIDEMICS; DISCRETE; BEHAVIOR; SPREAD; MODEL;
D O I
10.1016/j.mbs.2024.109336
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many social and biological networks periodically change over time with daily, weekly, and other cycles. Thus motivated, we formulate and analyze susceptible-infectious-susceptible (SIS) epidemic models over temporal networks with periodic schedules. More specifically, we assume that the temporal network consists of a cycle of alternately used static networks, each with a given duration. We observe a phenomenon in which two static networks are individually above the epidemic threshold but the alternating network composed of them renders the dynamics below the epidemic threshold, which we refer to as a Parrondo paradox for epidemics. We find that network structure plays an important role in shaping this phenomenon, and we study its dependence on the connectivity between and number of subpopulations in the network. We associate such paradoxical behavior with anti-phase oscillatory dynamics of the number of infectious individuals indifferent subpopulations.
引用
收藏
页数:13
相关论文
共 102 条
  • [2] ASYMMETRY AND DISORDER: A DECADE OF PARRONDO'S PARADOX
    Abbott, Derek
    [J]. FLUCTUATION AND NOISE LETTERS, 2010, 9 (01): : 129 - 156
  • [3] Compressing the Chronology of a Temporal Network with Graph Commutators
    Allen, Andrea J.
    Moore, Cristopher
    Hebert-Dufresne, Laurent
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (07)
  • [4] Can two chaotic systems give rise to order?
    Almeida, J
    Peralta-Salas, D
    Romera, M
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (1-2) : 124 - 132
  • [5] Atkinson KE, 2008, An introduction to numerical analysis
  • [6] Bansal Shweta, 2010, Journal of Biological Dynamics, V4, P478, DOI 10.1080/17513758.2010.503376
  • [7] Evolving dynamical networks
    Belykh, Igor
    di Bernardo, Mario
    Kurths, Juergen
    Porfiri, Maurizio
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 1 - 6
  • [8] Fixation probability in evolutionary dynamics on switching temporal networks
    Bhaumik, Jnanajyoti
    Masuda, Naoki
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 87 (05)
  • [9] Temporal dynamics and network analysis
    Blonder, Benjamin
    Wey, Tina W.
    Dornhaus, Anna
    James, Richard
    Sih, Andrew
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (06): : 958 - 972
  • [10] Dynamic Parrondo's paradox
    Canovas, J. S.
    Linero, A.
    Peralta-Salas, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) : 177 - 184