Autonomous Modeling of Machine Behavior Approach for Autonomously Modeling the Dynamic Behavior of Milling Machines and Potentials of this Approach in Industry

被引:0
|
作者
Oexle F. [1 ]
Netzer M. [2 ]
Deiters L. [1 ]
Puchta A. [1 ]
Fleischer J. [1 ]
机构
[1] Karlsruher Institut für Technologie (KIT), Wbk Institut für Produktionstechnik, Kaiserstraße 12, Karlsruhe
[2] Rolls-Royce Power Systems AG, Friedrichshafen
来源
ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb | 2024年 / 119卷 / 05期
关键词
Autonomous Machine; Dynamic Behavior; Industry; 4.0; Machine Tool; Modeling;
D O I
10.1515/zwf-2024-1054
中图分类号
学科分类号
摘要
The shortage of skilled workers is a major challenge facing companies in Germany today. To address this issue, intelligent machines will need to support employees in the future, with a particular focus on self-optimization. For that an approach that enables a milling machine to autonomously model its own dynamic behavior is presented in this article. In addition, a well-known company demonstrates how important the industrial implementation of such approaches is. © 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:318 / 323
页数:5
相关论文
共 50 条
  • [31] A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time
    Martinez-Martinez, F.
    Ruperez-Moreno, M. J.
    Martinez-Sober, M.
    Solves-Llorens, J. A.
    Lorente, D.
    Serrano-Lopez, A. J.
    Martinez-Sanchis, S.
    Monserrat, C.
    Martin-Guerrero, J. D.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 90 : 116 - 124
  • [32] An intelligent discrete event approach to modeling, simulation and control of autonomous agents
    Sheikh-Bahaei, S
    Liu, JY
    Jamshidi, M
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2004, 10 (04): : 337 - 348
  • [33] Modeling dynamic behavior of dielectric elastomer muscle for robotic applications
    Jeong, Seung Mo
    Mun, Heeju
    Yun, Sungryul
    Kyung, Ki-Uk
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [34] The impact of search costs on consumer behavior: A dynamic approach
    Seiler, Stephan
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2013, 11 (02): : 155 - 203
  • [35] Emotional Disturbances and Obesity: A Machine Learning Approach to Predictive Modeling
    Toderean, Roxana
    Geman, Oana
    ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 1, EHB-2023, 2024, 109 : 502 - 510
  • [36] A Machine Learning Approach to Modeling Power and Performance of Chip Multiprocessors
    Zhang, Changshu
    Ravindran, Arun
    Datta, Kushal
    Mukherjee, Arindam
    Joshi, Bharat
    2011 IEEE 29TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD), 2011, : 45 - 50
  • [37] A Recurrent Neural Approach for Modeling Non-Reproducible Behavior of PEM Fuel Cell Stacks
    Lopes, Francisco da Costa
    Watanabe, Edson H.
    Rolim, Luis Guilherme B.
    2013 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2013, : 661 - 667
  • [38] Analytical Modeling of Current-Voltage Photovoltaic Performance: An Easy Approach to Solar Panel Behavior
    Alvarez, Jose Miguel
    Alfonso-Corcuera, Daniel
    Roibas-Millan, Elena
    Cubas, Javier
    Cubero-Estalrrich, Juan
    Gonzalez-Estrada, Alejandro
    Jado-Puente, Rocio
    Sanabria-Pinzon, Marlon
    Pindado, Santiago
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [39] Modeling Pedestrian Violation Behavior at Signalized Crosswalks in China: A Hazards-Based Duration Approach
    Guo, Hongwei
    Gao, Ziyou
    Yang, Xiaobao
    Jiang, Xiaobei
    TRAFFIC INJURY PREVENTION, 2011, 12 (01) : 96 - 103
  • [40] Analytical modeling to predict the cutting behavior of ferromagnetic steels: A coupled magnetic-mechanical approach
    Mkaddem, Ali
    Benabou, Abdelkader
    El Mansori, Mohamed
    Clenet, Stephane
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (13) : 2078 - 2086