ON THE LOCAL CONVERGENCE OF THE SEMISMOOTH NEWTON METHOD FOR COMPOSITE OPTIMIZATION

被引:0
|
作者
Hu, Jiang [1 ]
Tian, Tonghua [2 ]
Pan, Shaohua [3 ]
Wen, Zaiwen [4 ]
机构
[1] Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston,MA,02114, United States
[2] School of Operations Research and Information Engineering, Cornell University, Ithaca,NY,14853, United States
[3] School of Mathematics, South China University of Technology, Guangzhou, China
[4] Beijing International Center for Mathematical Research, Center for Data Science, College of Engineering, Peking University, Beijing, China
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear equations
引用
收藏
相关论文
共 50 条
  • [21] A SEMISMOOTH NEWTON METHOD WITH MULTIDIMENSIONAL FILTER GLOBALIZATION FOR l1-OPTIMIZATION
    Milzarek, Andre
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 298 - 333
  • [22] Local convergence of the Newton method for generalized equations
    Dontchev, AL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (04): : 327 - 331
  • [23] On the Local Convergence of the Gauss-Newton Method
    Argyros, Ioannis K.
    Hilout, Said
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2009, 41 : 23 - 33
  • [24] A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization
    Ouyang, Wenqing
    Milzarek, Andre
    MATHEMATICAL PROGRAMMING, 2024,
  • [25] An inexact semismooth Newton method with application to adaptive randomized sketching for dynamic optimization
    Alshehri, Mohammed
    Antil, Harbir
    Herberg, Evelyn
    Kouri, Drew P.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 228
  • [26] A semismooth Newton based augmented Lagrangian method for nonsmooth optimization on matrix manifolds
    Yuhao Zhou
    Chenglong Bao
    Chao Ding
    Jun Zhu
    Mathematical Programming, 2023, 201 : 1 - 61
  • [27] SEMISMOOTH NEWTON METHOD FOR MINIMIZATION OF THE LLT MODEL
    Pang, Zhi-Feng
    Yang, Yu-Fei
    INVERSE PROBLEMS AND IMAGING, 2009, 3 (04) : 677 - 691
  • [28] ON A SEMISMOOTH* NEWTON METHOD FOR SOLVING GENERALIZED EQUATIONS
    Gfrerer, Helmut
    Outrata, Jiri, V
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 489 - 517
  • [29] CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR CONVEX COMPOSITE OPTIMIZATION UNDER A MAJORANT CONDITION
    Ferreira, O. P.
    Goncalves, M. L. N.
    Oliveira, P. R.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1757 - 1783
  • [30] CONVERGENCE ANALYSIS OF THE SEMISMOOTH NEWTON METHOD FOR SPARSE CONTROL PROBLEMS GOVERNED BY SEMILINEAR ELLIPTIC EQUATIONS
    Casas, Eduardo
    Mateos, Mariano
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (06) : 3076 - 3090