ON THE LOCAL CONVERGENCE OF THE SEMISMOOTH NEWTON METHOD FOR COMPOSITE OPTIMIZATION

被引:0
|
作者
Hu, Jiang [1 ]
Tian, Tonghua [2 ]
Pan, Shaohua [3 ]
Wen, Zaiwen [4 ]
机构
[1] Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston,MA,02114, United States
[2] School of Operations Research and Information Engineering, Cornell University, Ithaca,NY,14853, United States
[3] School of Mathematics, South China University of Technology, Guangzhou, China
[4] Beijing International Center for Mathematical Research, Center for Data Science, College of Engineering, Peking University, Beijing, China
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear equations
引用
收藏
相关论文
共 50 条
  • [11] On convergence of the Gauss-Newton method for convex composite optimization
    Chong Li
    Xinghua Wang
    Mathematical Programming, 2002, 91 : 349 - 356
  • [12] Bilinear control of semilinear elliptic PDEs: convergence of a semismooth Newton method
    Casas, Eduardo
    Chrysafinos, Konstantinos
    Mateos, Mariano
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 143 - 163
  • [13] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [14] On a globally convergent semismooth* Newton method in nonsmooth nonconvex optimization
    Gfrerer, Helmut
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 91 (01) : 67 - 124
  • [15] An Augmented Lagrangian Primal-Dual Semismooth Newton Method for Multi-Block Composite Optimization
    Deng, Zhanwang
    Deng, Kangkang
    Hu, Jiang
    Wen, Zaiwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
  • [16] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [17] A nonmonotone semismooth inexact Newton method
    Bonettini, Silvia
    Tinti, Federica
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 637 - 657
  • [18] PSNA: A pathwise semismooth Newton algorithm for sparse recovery with optimal local convergence and oracle properties
    Huang, Jian
    Jiao, Yuling
    Lu, Xiliang
    Shi, Yueyong
    Yang, Qinglong
    Yang, Yuanyuan
    SIGNAL PROCESSING, 2022, 194
  • [19] Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization
    Li, Chong
    Ng, K. F.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) : 613 - 642
  • [20] A semismooth Newton based augmented Lagrangian method for nonsmooth optimization on matrix manifolds
    Zhou, Yuhao
    Bao, Chenglong
    Ding, Chao
    Zhu, Jun
    MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 1 - 61