Improved phase prediction of high-entropy alloys assisted by imbalance learning

被引:2
|
作者
Zhang, Libin [1 ]
Oh, Chang-Seok [2 ]
Choi, Yoon Suk [1 ]
机构
[1] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[2] Korea Inst Mat Sci, Chang Won 51508, South Korea
基金
新加坡国家研究基金会;
关键词
High-entropy alloys; Machine learning; Phase prediction; Imbalance learning; SOLID-SOLUTION PHASE; MECHANICAL-PROPERTIES; SUPERALLOYS; SELECTION; SMOTE;
D O I
10.1016/j.matdes.2024.113310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Predicting phase formation is crucial in novel high-entropy alloys (HEAs) design. Herein, machine learning and imbalance learning algorithms were combined together to improve the phase prediction of HEAs. In this work, an extensive database by collecting experimental data from published literature was constructed, and the key features affecting the phase formation of HEAs were filtered out by performing a three-step feature selection process. Then, extreme gradient boosting (XGB) models were constructed to categorize phase structures of HEAs with high accuracies. Moreover, the Synthetic Minority Oversampling TEchnique (SMOTE) algorithm was employed for data oversampling to address the data imbalance issue. It was found that imbalanced learning significantly improves the phase prediction, particularly for the minority class, without costing the overall prediction accuracy. Finally, a machine learning-base protocol was proposed to integrate established models to classify the phase formation of HEAs into seven phase labels, and its generalization ability was verified. The present work provides a practical approach in predicting phase structures of HEAs and enhances the efficiency in developing advanced HEAs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [2] Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning
    Chang, Huinan
    Tao, Yiwen
    Liaw, Peter K.
    Ren, Jingli
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 921
  • [3] Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach
    Chen, Cun
    Han, Xiaoli
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 239
  • [4] Machine learning-based prediction of phases in high-entropy alloys
    Machaka, Ronald
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [5] Phase formation prediction of high-entropy alloys: a deep learning study
    Zhu, Wenhan
    Huo, Wenyi
    Wang, Shiqi
    Wang, Xu
    Ren, Kai
    Tan, Shuyong
    Fang, Feng
    Xie, Zonghan
    Jiang, Jianqing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 800 - 809
  • [6] Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
    Hou, Shuai
    Li, Yujiao
    Bai, Meijuan
    Sun, Mengyue
    Liu, Weiwei
    Wang, Chao
    Tetik, Halil
    Lin, Dong
    MATERIALS, 2022, 15 (09)
  • [7] Yield strength prediction of high-entropy alloys using machine learning
    Bhandari, Uttam
    Rafi, Md Rumman
    Zhang, Congyan
    Yang, Shizhong
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [8] Machine Learning-Based Prediction of Complex Combination Phases in High-Entropy Alloys
    Thampiriyanon, Jirapracha
    Khumkoa, Sakhob
    METALS, 2025, 15 (03)
  • [9] Overview: recent studies of machine learning in phase prediction of high entropy alloys
    Yan, Yong-Gang
    Lu, Dan
    Wang, Kun
    TUNGSTEN, 2023, 5 (01) : 32 - 49
  • [10] Machine learning guided prediction of dynamic energy release in high-entropy alloys
    Zhao, Fengyuan
    Zhang, Zhouran
    Ye, Yicong
    Li, Yahao
    Li, Shun
    Tang, Yu
    Zhu, Li'an
    Bai, Shuxin
    MATERIALS & DESIGN, 2024, 246