Higher order method based on the coupling of local discontinuous Galerkin method with multistep implicit-explicit time-marching for the micropolar Navier-Stokes equations

被引:0
|
作者
Liu, Shanshan [1 ]
Liu, Demin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
FLUID; STABILITY; EXISTENCE; FLOW;
D O I
10.1063/5.0239069
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the spatial local discontinuous Galerkin (LDG) approximation coupled with the temporal multistep implicit-explicit (IMEX) evolution for the micropolar Navier-Stokes equations (MNSE) is adopted to construct an efficient fully discrete method. First, the multistep IMEX-LDG methods are constructed up to the third order, which have small computational scale and facilitate implementation to higher orders. Second, the unconditional stability of the fully discrete method on Cartesian grids is derived theoretically, meaning that the temporal step size tau is upper bounded by a positive constant independent of the spatial mesh size h. Last, numerical results for nonlinear MNSE with different boundary conditions are presented, confirming the theoretical validity and effectiveness of the method.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A SECOND ORDER IN TIME MODIFIED LAGRANGE-GALERKIN FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Bermejo, R.
    Galan del Sastre, P.
    Saavedra, L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3084 - 3109
  • [22] Up to sixth-order accurate A-stable implicit schemes applied to the Discontinuous Galerkin discretized Navier-Stokes equations
    Nigro, Alessandra
    De Bartolo, Carmine
    Bassi, Francesco
    Ghidoni, Antonio
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 136 - 162
  • [23] A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes
    Tavelli, Maurizio
    Dumbser, Michael
    COMPUTERS & FLUIDS, 2015, 119 : 235 - 249
  • [24] A new direct discontinuous Galerkin method with interface correction for two-dimensional compressible Navier-Stokes equations
    Danis, Mustafa E.
    Yan, Jue
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 452
  • [25] A divergence-conforming hybridized discontinuous Galerkin method for the incompressible Reynolds-averaged Navier-Stokes equations
    Peters, Eric L.
    Evans, John A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 91 (03) : 112 - 133
  • [26] A horizontally explicit, vertically implicit (HEVI) discontinuous Galerkin scheme for the 2-dimensional Euler and Navier-Stokes equations using terrain-following coordinates
    Baldauf, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [27] A hybrid implicit-explicit discontinuous Galerkin spectral element time domain (DG-SETD) method for computational elastodynamics
    Liu, Qi Qiang
    Zhuang, Mingwei
    Zhan, Weichen
    Shi, Linlin
    Liu, Qing Huo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 234 (03) : 1855 - 1869
  • [28] High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations
    Massa, F. C.
    Noventa, G.
    Lorini, M.
    Bassi, F.
    Ghidoni, A.
    COMPUTERS & FLUIDS, 2018, 162 : 55 - 71
  • [29] Second order time-space iterative method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    He, Yinnian
    Feng, Xinlong
    APPLIED MATHEMATICS LETTERS, 2016, 59 : 79 - 86
  • [30] The Direct Discontinuous Galerkin Method with Explicit-Implicit-Null Time Discretizations for Nonlinear Diffusion Equations
    Li, Yumiao
    Yang, Yin
    Liu, Tiegang
    Yuan, Weixiong
    Cao, Kui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024,