Building semantic segmentation from large-scale point clouds via primitive recognition

被引:0
|
作者
Romanengo, Chiara [1 ]
Cabiddu, Daniela [1 ]
Pittaluga, Simone [1 ]
Mortara, Michela
机构
[1] CNR, IMATI, Via Marini 6, I-16149 Genoa, Liguria, Italy
关键词
Point clouds; Semantic segmentation; Fitting primitives; Feature recognition; Urban digital twins; AIRBORNE LIDAR DATA; ALGORITHM;
D O I
10.1016/j.gmod.2024.101234
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Modelling objects at a large resolution or scale brings challenges in the storage and processing of data and requires efficient structures. In the context of modelling urban environments, we face both issues: 3D data from acquisition extends at geographic scale, and digitization of buildings of historical value can be particularly dense. Therefore, it is crucial to exploit the point cloud derived from acquisition as much as possible, before (or alongside) deriving other representations (e.g., surface or volume meshes) for further needs (e.g., visualization, simulation). In this paper, we present our work in processing 3D data of urban areas towards the generation of a semantic model fora city digital twin. Specifically, we focus on the recognition of shape primitives (e.g., planes, cylinders, spheres) in point clouds representing urban scenes, with the main application being the semantic segmentation into walls, roofs, streets, domes, vaults, arches, and so on. Here, we extend the conference contribution in Romanengo et al. (2023a), where we presented our preliminary results on single buildings. In this extended version, we generalize the approach to manage whole cities by preliminarily splitting the point cloud building-wise and streamlining the pipeline. We added a thorough experimentation with a benchmark dataset from the city of Tallinn (47,000 buildings), a portion of Vaihingen (170 building) and our case studies in Catania and Matera, Italy (4 high-resolution buildings). Results show that our approach successfully deals with point clouds of considerable size, either surveyed at high resolution or covering wide areas. In both cases, it proves robust to input noise and outliers but sensitive to uneven sampling density.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Cascaded Contextual Reasoning for Large-Scale Point Cloud Semantic Segmentation
    Zhang, Fengyi
    Xia, Xiuyu
    IEEE ACCESS, 2023, 11 : 20755 - 20768
  • [42] Pipeline for Semantic Segmentation of Large Railway Point Clouds
    Gabrielidis, Hugo
    Gatti, Filippo
    Vialle, Stephane
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I, 2025, 15346 : 167 - 179
  • [43] Large-Scale Unsupervised Semantic Segmentation
    Gao, Shanghua
    Li, Zhong-Yu
    Yang, Ming-Hsuan
    Cheng, Ming-Ming
    Han, Junwei
    Torr, Philip
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7457 - 7476
  • [44] A deep learning network for semantic labeling of large-scale urban point clouds
    Yang B.
    Han X.
    Dong Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1059 - 1067
  • [45] Material augmented semantic segmentation of point clouds for building elements
    Liang, Houhao
    Yeoh, Justin
    Chua, David
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (15) : 2312 - 2329
  • [46] SyS3DS: Systematic Sampling of Large-Scale LiDAR Point Clouds for Semantic Segmentation in Forestry Robotics
    Mukhandi, Habibu
    Ferreira, Joao Filipe
    Peixoto, Paulo
    SENSORS, 2024, 24 (03)
  • [47] Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning
    Zhang, Rui
    Li, Guangyun
    Li, Minglei
    Wang, Li
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 143 : 85 - 96
  • [48] FAR-Net: Semantic Segmentation of Large-Scale Point Clouds Based on Feature Aggregation and Recoding for Aerial Computing
    Zhang, Jianlong
    Chen, Huangwei
    Wang, Bin
    Fang, Guangzu
    Zhou, Yang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5217 - 5227
  • [49] PVI-Net: Point-Voxel-Image Fusion for Semantic Segmentation of Point Clouds in Large-Scale Autonomous Driving Scenarios
    Wang, Zongshun
    Li, Ce
    Ma, Jialin
    Feng, Zhiqiang
    Xiao, Limei
    INFORMATION, 2024, 15 (03)
  • [50] 3D Semantic Segmentation of Large-Scale Point-Clouds in Urban Areas Using Deep Learning
    Lowphansirikul, Chakri
    Kim, Kyoung-Sook
    Vinayaraj, Poliyapram
    Tuarob, Suppawong
    2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2019, : 238 - 243