Building semantic segmentation from large-scale point clouds via primitive recognition

被引:0
|
作者
Romanengo, Chiara [1 ]
Cabiddu, Daniela [1 ]
Pittaluga, Simone [1 ]
Mortara, Michela
机构
[1] CNR, IMATI, Via Marini 6, I-16149 Genoa, Liguria, Italy
关键词
Point clouds; Semantic segmentation; Fitting primitives; Feature recognition; Urban digital twins; AIRBORNE LIDAR DATA; ALGORITHM;
D O I
10.1016/j.gmod.2024.101234
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Modelling objects at a large resolution or scale brings challenges in the storage and processing of data and requires efficient structures. In the context of modelling urban environments, we face both issues: 3D data from acquisition extends at geographic scale, and digitization of buildings of historical value can be particularly dense. Therefore, it is crucial to exploit the point cloud derived from acquisition as much as possible, before (or alongside) deriving other representations (e.g., surface or volume meshes) for further needs (e.g., visualization, simulation). In this paper, we present our work in processing 3D data of urban areas towards the generation of a semantic model fora city digital twin. Specifically, we focus on the recognition of shape primitives (e.g., planes, cylinders, spheres) in point clouds representing urban scenes, with the main application being the semantic segmentation into walls, roofs, streets, domes, vaults, arches, and so on. Here, we extend the conference contribution in Romanengo et al. (2023a), where we presented our preliminary results on single buildings. In this extended version, we generalize the approach to manage whole cities by preliminarily splitting the point cloud building-wise and streamlining the pipeline. We added a thorough experimentation with a benchmark dataset from the city of Tallinn (47,000 buildings), a portion of Vaihingen (170 building) and our case studies in Catania and Matera, Italy (4 high-resolution buildings). Results show that our approach successfully deals with point clouds of considerable size, either surveyed at high resolution or covering wide areas. In both cases, it proves robust to input noise and outliers but sensitive to uneven sampling density.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation
    Yan, Kunping
    Hu, Qingyong
    Wang, Hanyun
    Huang, Xiaohong
    Li, Li
    Ji, Song
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] EDGE-CONVOLUTION POINT NET FOR SEMANTIC SEGMENTATION OF LARGE-SCALE POINT CLOUDS
    Contreras, Jhonatan
    Denzler, Joachim
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5236 - 5239
  • [3] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [4] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [5] A dual projection method for semantic segmentation of large-scale point clouds
    Zhao, Haoying
    Zhou, Aimin
    VISUAL COMPUTER, 2025,
  • [6] CSFNet: Cross-Modal Semantic Focus Network for Semantic Segmentation of Large-Scale Point Clouds
    Luo, Yang
    Han, Ting
    Liu, Yujun
    Su, Jinhe
    Chen, Yiping
    Li, Jinyuan
    Wu, Yundong
    Cai, Guorong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [7] Feature Graph Convolution Network With Attentive Fusion for Large-Scale Point Clouds Semantic Segmentation
    Chen, Jun
    Chen, Yiping
    Wang, Cheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Lei Wang
    Jiaji Wu
    Xunyu Liu
    Xiaoliang Ma
    Jun Cheng
    Complex & Intelligent Systems, 2022, 8 : 3833 - 3845
  • [9] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Wang, Lei
    Wu, Jiaji
    Liu, Xunyu
    Ma, Xiaoliang
    Cheng, Jun
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 3833 - 3845
  • [10] Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning
    Ai Da
    Zhang Xiaoyang
    Xu Ce
    Qin Siyu
    Yuan Hui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)