Data-driven neural networks for biological wastewater resource recovery: Development and challenges

被引:0
|
作者
Xu, Run-Ze [1 ,2 ]
Cao, Jia-Shun [1 ]
Luo, Jing-Yang [1 ]
Ni, Bing-Jie [3 ]
Fang, Fang [1 ]
Liu, Weijing [4 ]
Wang, Peifang [1 ]
机构
[1] Hohai Univ, Coll Environm, Key Lab Integrated Regulat & Resource Dev Shallow, Minist Educ, Nanjing 210098, Peoples R China
[2] Anhui Jianzhu Univ, Anhui Prov Key Lab Environm Pollut Control & Resou, Hefei 230601, Peoples R China
[3] Univ New South Wales, Sydney, NSW 2052, Australia
[4] Prov Acad Environm Sci, Jiangsu Prov Key Lab Environm Engn, Nanjing 210036, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Wastewater treatment process; Big data; Neural networks; Deep learning; Resource recovery; MICROBIAL FUEL-CELL; ANAEROBIC CO-DIGESTION; VOLATILE FATTY-ACIDS; ELECTRICITY-GENERATION; SUBSTRATE COMPETITION; BIOGAS PRODUCTION; VFA CONCENTRATION; FOOD WASTE; OPTIMIZATION; PREDICTION;
D O I
10.1016/j.jclepro.2024.143781
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recovering resources from wastewater has received increasing attention due to the requirement of carbon neutrality. The mathematical simulation of biological resource recovery processes and the intelligent control of wastewater treatment plants (WWTPs) are crucial for transforming traditional WWTPs into water resource recovery facilities (WRRFs). Although mechanistic models such as the activated sludge model and anaerobic digestion model have been widely applied, data-driven models, especially neural networks, outperform the mechanistic models in modeling intricate microbe-driven wastewater resource recovery processes with unknown mechanisms. Therefore, this review focuses on the development and current applications of neural networks including shallow and deep neural networks in the field of biological resource recovery from wastewater. The basic development and structures of neural networks are introduced first. Then, the current applications of neural networks in recovering biogas, volatile fatty acids, biofuel, electricity and bioplastic from wastewater are critically reviewed. The important input variables related to resource production are analyzed and the importance of preparing datasets for neural networks is highlighted. Moreover, the complexity of neural networks is discussed to guide the interdisciplinary development of neural networks in recovering resources from wastewater. Finally, the current limitations and perspectives of neural networks in this interdisciplinary field are proposed. The implementation of neural networks in full-scale WRRFs remains limited, necessitating further research and intensified efforts to enhance their practical applications. The combination of neural networks with mechanistic models presents great potential to further address practical modeling issues in this interdisciplinary field. This review would provide guidance for utilizing shallow and deep neural networks to model and optimize biological wastewater resource recovery processes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Data-Driven Certification of Neural Networks With Random Input Noise
    Anderson, Brendon G.
    Sojoudi, Somayeh
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (01): : 249 - 260
  • [2] DATA-DRIVEN FIBER TRACTOGRAPHY WITH NEURAL NETWORKS
    Wegmayr, Viktor
    Giuliari, Giacomo
    Holdener, Stefan
    Buhmann, Joachim
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1030 - 1033
  • [3] Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects
    Puyol, Daniel
    Batstone, Damien J.
    Hulsen, Tim
    Astals, Sergi
    Peces, Miriam
    Kromer, Jens O.
    FRONTIERS IN MICROBIOLOGY, 2017, 7
  • [4] Neural Networks and Imbalanced Learning for Data-Driven Scientific Computing With Uncertainties
    Pourkamali-Anaraki, Farhad
    Hariri-Ardebili, Mohammad Amin
    IEEE ACCESS, 2021, 9 : 15334 - 15350
  • [5] Data-driven emergence of convolutional structure in neural networks
    Ingrosso, Alessandro
    Goldt, Sebastian
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (40)
  • [6] Data-Driven Resource Allocation for Deep Learning in IoT Networks
    Chun, Chang-Jae
    Jeong, Cheol
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 2082 - 2096
  • [7] Data to intelligence: The role of data-driven models in wastewater treatment
    Bahramian, Majid
    Dereli, Recep Kaan
    Zhao, Wanqing
    Giberti, Matteo
    Casey, Eoin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [8] Data-driven modelling for resource recovery: Data volume, variability, and visualisation for an industrial bioprocess
    Fisher, Oliver J.
    Watson, Nicholas J.
    Porcu, Laura
    Bacon, Darren
    Rigley, Martin
    Gomes, Rachel L.
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 185
  • [9] A Data-Driven Architecture for Sensor Validation Based on Neural Networks
    Darvishi, Hossein
    Ciuonzo, Domenico
    Eide, Eivind Roson
    Rossi, Pierluigi Salvo
    2020 IEEE SENSORS, 2020,
  • [10] EXPLOITING PARALLELISM IN NEURAL NETWORKS ON A DYNAMIC DATA-DRIVEN SYSTEM
    ALHAJ, AM
    TERADA, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1993, E76A (10) : 1804 - 1811