Semiconductor Nanoporous Anodic Alumina Photonic Crystals as a Model Photoelectrocatalytic Platform for Solar Light-Driven Reactions

被引:1
作者
Ngo, Van Truc [1 ,2 ]
Lim, Siew Yee [1 ,2 ]
Law, Cheryl Suwen [1 ,2 ]
Wang, Juan [1 ,2 ]
Hamza, Mahmoud Adel [3 ,4 ]
Abell, Andrew D. [2 ,3 ]
Zhang, Huayang [5 ]
Santos, Abel [1 ,2 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Inst Photon & Adv Sensing IPAS, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Dept Chem, Adelaide, SA 5005, Australia
[4] Ain Shams Univ, Chem Dept, Cairo 11566, Egypt
[5] Ludwig Maximilians Univ Munchen, Nanoinst Munich, Dept Phys, Nanospectroscopy Grp, Koniginstr 10, D-80539 Munich, Germany
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2024年 / 5卷 / 11期
基金
澳大利亚研究理事会;
关键词
distributed Bragg reflectors; nanoporous anodic alumina; photoelectrocatalysis; photonic crystals; slow photons; SURFACE-PLASMON RESONANCE; GRADIENT-INDEX FILTERS; TIO2 NANOTUBE ARRAYS; WATER; PHOTOCATALYSIS; DEGRADATION; NANOPARTICLES; FUNDAMENTALS; NANOSTRUCTURES; POLLUTANTS;
D O I
10.1002/aesr.202400125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, nanoporous anodic alumina distributed-Bragg reflectors (NAA-DBRs) functionalized with tungsten trioxide (WO3) are used as prototype photoelectrocatalysts (PEC) for harnessing the slow photon effect to maximize photon-to-electron conversion efficiency under UV-visible-NIR illumination. NAA-DBR structures are structurally engineered by anodization, where their characteristic photonic stopband is precisely tuned along specific positions of the UV-visible spectrum. Subsequent atomic layer deposition is employed to coat the inner surface of these porous structures with WO3 semiconductor layers. Upon the application of overpotential bias, these platforms reveal excellent electron-hole pair separation to boost photoelectrocatalytic reactions. Photoelectrochemical degradation of methylene blue is used as a model reaction to elucidate enhancements associated with structural and optoelectronic arrangements. Notably, precise spectral alignment between the photonic stopband's red edge and the absorbance band of methylene blue enhances the degradation performance through the slow photon effect. Applying an overpotential bias further improves the photodegradation performance through efficient charge separation. These systems outperform comparable structures in this model reaction, achieving a maximum kinetic rate of 13.7 +/- 2.0 h-1. The findings create new opportunities to develop high-performing PEC technologies harnessing light-matter interactions. Harnessing slow photons in nanoengineered photonic crystal photoelectrocatalysts. The optical properties of nanoporous anodic alumina distributed Bragg reflectors are engineered across the UV-visible spectrum. Modifying the inner surface of these porous photonic crystals with WO3 provides a unique platform for boosting the photoelectrochemical degradation of model organics.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:15
相关论文
共 55 条
[1]  
Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100
[2]   Tailoring the Pore Size and Architecture of CeO2/TiO2 Core/Shell Inverse Opals by Atomic Layer Deposition [J].
Alessandri, Ivano ;
Zucca, Marcello ;
Ferroni, Matteo ;
Bontempi, Elza ;
Depero, Laura E. .
SMALL, 2009, 5 (03) :336-340
[3]   Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review [J].
Alulema-Pullupaxi, Paulina ;
Espinoza-Montero, Patricio J. ;
Sigcha-Pallo, Carol ;
Vargas, Ronald ;
Fernandez, Lenys ;
Peralta-Hernandez, Juan M. ;
Paz, J. L. .
CHEMOSPHERE, 2021, 281
[4]   Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals [J].
Augugliaro, Vincenzo ;
Camera-Roda, Giovanni ;
Loddo, Vittorio ;
Palmisano, Giovanni ;
Palmisano, Leonardo ;
Soria, Javier ;
Yurdakal, Sedat .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (10) :1968-1981
[5]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[6]   Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes [J].
Bessegato, Guilherme Garcia ;
Cardoso, Juliano Carvalho ;
Boldrin Zanoni, Maria Valnice .
CATALYSIS TODAY, 2015, 240 :100-106
[7]   Plasmon-Sensitized Graphene/TiO2 Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting [J].
Boppella, Ramireddy ;
Kochuveedu, Saji Thomas ;
Kim, Heejun ;
Jeong, Myung Jin ;
Mota, Filipe Marques ;
Park, Jong Hyeok ;
Kim, Dong Ha .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :7075-7083
[8]   Recent Advances in Opal/Inverted Opal Photonic Crystal Photocatalysts [J].
Chen, Yiwen ;
Li, Lingling ;
Xu, Quanlong ;
Chen, Wei ;
Dong, Youqing ;
Fan, Jiajie ;
Ma, Dekun .
SOLAR RRL, 2021, 5 (06)
[9]   On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry [J].
Chen, Yuting ;
Santos, Abel ;
Ho, Daena ;
Wang, Ye ;
Kumeria, Tushar ;
Li, Junsheng ;
Wang, Changhai ;
Losic, Dusan .
ELECTROCHIMICA ACTA, 2015, 174 :672-681
[10]   Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions [J].
Curti, Mariano ;
Schneider, Jenny ;
Bahnemann, Detlef W. ;
Mendive, Cecilia B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (19) :3903-3910