Addressing Low-Cost Methane Sensor Calibration Shortcomings with Machine Learning

被引:0
|
作者
Kiplimo, Elijah [1 ]
Riddick, Stuart N. [1 ]
Mbua, Mercy [1 ]
Upreti, Aashish [1 ]
Anand, Abhinav [1 ]
Zimmerle, Daniel J. [1 ]
机构
[1] Colorado State Univ, Energy Inst, METEC, Ft Collins, CO 80523 USA
关键词
methane; quantification; metal-oxide; sensor; calibration; machine learning; WELL PADS; GAS; EMISSIONS; PERFORMANCE; OIL; QUANTIFICATION;
D O I
10.3390/atmos15111313
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Quantifying methane emissions is essential for meeting near-term climate goals and is typically carried out using methane concentrations measured downwind of the source. One major source of methane that is important to observe and promptly remediate is fugitive emissions from oil and gas production sites but installing methane sensors at the thousands of sites within a production basin is expensive. In recent years, relatively inexpensive metal oxide sensors have been used to measure methane concentrations at production sites. Current methods used to calibrate metal oxide sensors have been shown to have significant shortcomings, resulting in limited confidence in methane concentrations generated by these sensors. To address this, we investigate using machine learning (ML) to generate a model that converts metal oxide sensor output to methane mixing ratios. To generate test data, two metal oxide sensors, TGS2600 and TGS2611, were collocated with a trace methane analyzer downwind of controlled methane releases. Over the duration of the measurements, the trace gas analyzer's average methane mixing ratio was 2.40 ppm with a maximum of 147.6 ppm. The average calculated methane mixing ratios for the TGS2600 and TGS2611 using the ML algorithm were 2.42 ppm and 2.40 ppm, with maximum values of 117.5 ppm and 106.3 ppm, respectively. A comparison of histograms generated using the analyzer and metal oxide sensors mixing ratios shows overlap coefficients of 0.95 and 0.94 for the TGS2600 and TGS2611, respectively. Overall, our results showed there was a good agreement between the ML-derived metal oxide sensors' mixing ratios and those generated using the more accurate trace gas analyzer. This suggests that the response of lower-cost sensors calibrated using ML could be used to generate mixing ratios with precision and accuracy comparable to higher priced trace methane analyzers. This would improve confidence in low-cost sensors' response, reduce the cost of sensor deployment, and allow for timely and accurate tracking of methane emissions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Calibration of a Low-Cost Methane Sensor Using Machine Learning
    Mitchell, Hazel Louise
    Cox, Simon J.
    Lewis, Hugh G.
    SENSORS, 2024, 24 (04)
  • [2] The calibration and deployment of a low-cost methane sensor
    Riddick, Stuart N.
    Mauzerall, Denise L.
    Celia, Michael
    Allen, Grant
    Pitt, Joseph
    Kang, Mary
    Riddick, John C.
    ATMOSPHERIC ENVIRONMENT, 2020, 230
  • [3] Utilization of a Low-Cost Sensor Array for Mobile Methane Monitoring
    Silberstein, Jonathan
    Wellbrook, Matthew
    Hannigan, Michael
    SENSORS, 2024, 24 (02)
  • [4] Development and Calibration of a Low-Cost, Piezoelectric Rainfall Sensor through Machine Learning
    Antonini, Andrea
    Melani, Samantha
    Mazza, Alessandro
    Baldini, Luca
    Adirosi, Elisa
    Ortolani, Alberto
    SENSORS, 2022, 22 (17)
  • [5] New Calibration Method for Implementing Machine Learning in Low-Cost Sensor Applications
    Murrell, Niko
    Bradley, Ryan
    Bajaj, Nikhil
    Whitney, Julie
    Chiu, George T-C
    IEEE SENSORS LETTERS, 2020, 4 (02)
  • [6] Evaluation of nine machine learning regression algorithms for calibration of low-cost PM2.5 sensor
    Kumar, Vikas
    Sahu, Manoranjan
    JOURNAL OF AEROSOL SCIENCE, 2021, 157
  • [7] Low-Cost Formaldehyde Sensor Evaluation and Calibration in a Controlled Environment
    Chattopadhyay, Arnab
    Huertas, Andres
    Rebeiro-Hargrave, Andrew
    Fung, Pak Lun
    Varjonen, Samu
    Hieta, Tuomas
    Tarkoma, Sasu
    Petaja, Tuukka
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11791 - 11802
  • [8] Calibration of Low-Cost Particle Sensors by Using Machine-Learning Method
    Chen, Chen-Chia
    Kuo, Chih-Ting
    Chen, Ssu-Ying
    Lin, Chih-Hsing
    Chue, Jin-Ju
    Hsieh, Yi-Jie
    Cheng, Chun-Wen
    Wu, Chieh-Ming
    Huang, Chun-Ming
    2018 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2018), 2018, : 111 - 114
  • [9] A Flexible, Low-Cost, Miniature Methane Sensor Based on PEDOT:PSS
    Luo, Xiaojin
    Rao, Shihang
    Lu, Hailong
    Cui, Yue
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (05) : 821 - 824
  • [10] Evaluation of Low-cost AirQuality Sensor Calibration Models
    Aula, Kasimir
    Lagerspetz, Eemil
    Nurmi, Petteri
    Tarkoma, Sasu
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2022, 18 (04)