Two-component nonlinear waves

被引:0
|
作者
Adamashvili, G. T. [1 ]
机构
[1] Tech Univ Georgia, Kostava Str 77, Tbilisi 0179, Georgia
关键词
Two-component nonlinear waves; Generalized perturbation reduction method; Generalized equation for nonlinear solitary; waves; SELF-INDUCED TRANSPARENCY; PULSE; PROPAGATION; SOLITONS;
D O I
10.1016/j.physleta.2024.129986
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized equation for the study of two-component nonlinear waves in different fields of physics is considered. In special cases, this equation is reduced to a set of the various well-known equations describing nonlinear solitary waves in the different areas of physics. Using the generalized perturbation reduction method the explicit analytical expressions for the shape and parameters of two-component nonlinear wave is presented. This nonlinear wave solution coincides with the vector 0ar pulse of the self-induced transparency.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Condensation of classical nonlinear waves in a two-component system
    Salman, Hayder
    Berloff, Natalia G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1482 - 1489
  • [2] On the Propagation Model of Two-Component Nonlinear Optical Waves
    Smirnov, Aleksandr O.
    Frolov, Eugeni A.
    AXIOMS, 2023, 12 (10)
  • [3] Evolution of two-component waves interacting in nonlinear viscous media
    Chernykh, VA
    Sukhorukov, AP
    Zakharova, IG
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 2002, 66 (12): : 1747 - 1749
  • [4] Evolution of two-component waves interacting in nonlinear viscous media
    Chernykh, V.A.
    Sukhorukov, A.P.
    Zakharova, I.G.
    Izvestiya Akademii Nauk. Ser. Fizicheskaya, 2002, 66 (12): : 1747 - 1750
  • [5] Plane nonlinear waves in a two-component mixture of strained solid bodies
    Erofeev, VI
    ACOUSTICAL PHYSICS, 1996, 42 (01) : 55 - 59
  • [6] Exotic Localized Vector Waves in a Two-Component Nonlinear Wave System
    Xu, Ling
    Wang, Deng-Shan
    Wen, Xiao-Yong
    Jiang, Yao-Lin
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (02) : 537 - 564
  • [7] Exotic Localized Vector Waves in a Two-Component Nonlinear Wave System
    Ling Xu
    Deng-Shan Wang
    Xiao-Yong Wen
    Yao-Lin Jiang
    Journal of Nonlinear Science, 2020, 30 : 537 - 564
  • [8] Nonlinear polarization waves in a two-component Bose-Einstein condensate
    Kamchatnov, A. M.
    Kartashov, Y. V.
    Larre, P. -E.
    Pavloff, N.
    PHYSICAL REVIEW A, 2014, 89 (03)
  • [9] Vector Nonlinear Waves in a Two-Component Bose-Einstein Condensate System
    Wang, Xiu-Bin
    Han, Bo
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (12)
  • [10] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrodinger equations
    Li, Zai-Dong
    Huo, Cong-Zhe
    Li, Qiu-Yan
    He, Peng-Bin
    Xu, Tian-Fu
    CHINESE PHYSICS B, 2018, 27 (04)