Rational structure design of metal-based cathode for high-rate and long-cycling sodium nickel chloride batteries

被引:0
作者
Xiong, Guowei [1 ,2 ,3 ]
Wu, Xiangwei [1 ,2 ,3 ]
Wen, Zhaoyin [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-nickel chloride battery; NiFe nanowires; High-rate capability; Long-term cycling; LOW-COST; PERFORMANCE; ELECTROLYTES;
D O I
10.1016/j.compositesb.2024.111636
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-temperature sodium-nickel chloride (Na-NiCl2) batteries represented as an advanced energy storage technology show impressive advantages including abundant raw materials, high safety and long-cycling life. Nevertheless, their large-scale application is still hindered by the poor stability and rate capability of the cathode. In this work, we designed a three-dimensional cross-linked network composed of NiFe alloy nanowires via a magnetic-field assisted method. The as-prepared NiFe nanowires (NiFe NWs) are mixed with NaCl as the composite cathode of sodium-metal chloride batteries, delivering exceptionally enhanced rate performance (150.3 mAh/g@0.88C) and superior cycling stability (84.3 % capacity retention after 500 cycles). The properties are superior to those of the cathode based on the pristine Ni nanowires or the NiFe nanoparticles, which is ascribe to the existence of active Fe metal and the continuous conductive network, as confirmed by kinetics analysis. After experiencing a long-term cycling at large current density (similar to 0.88C), no obvious coarsening of NiFe NWs and NaCl particles occurs. Moreover, the large-size Na-NiCl2 battery with capacity of 229 mAh reaches a practical energy density of 265.65 Wh kg(-1) (similar to 0.3C) with energy efficiency of 88.6 %. Therefore, our work provides a guide for rational design of cathode structure, thereby improving rate and cycling performance of Na-NiCl2 batteries.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Easy approach to realize low cost and high cell capacity in sodium nickel-iron chloride battery [J].
Ahn, Byeong-Min ;
Ahn, Cheol-Woo ;
Hahn, Byung-Dong ;
Choi, Jong-Jin ;
Kim, Yang-Do ;
Lim, Sung-Ki ;
Jung, Keeyoung ;
Park, Yoon-Cheol ;
Choi, Joon-Hwan .
COMPOSITES PART B-ENGINEERING, 2019, 168 :442-447
[2]   Microstructure design of metal composite for active material in sodium nickel-iron chloride battery [J].
Ahn, Cheol-Woo ;
Kim, Mangi ;
Hahn, Byung-Dong ;
Hong, Inchul ;
Kim, Woosung ;
Moon, Goyoung ;
Lee, Heesoo ;
Jung, Keeyoung ;
Park, Yoon-Cheol ;
Choi, Joon-Hwan .
JOURNAL OF POWER SOURCES, 2016, 329 :50-56
[3]   Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer [J].
Ao, Xin ;
Wen, Zhaoyin ;
Hu, Yingying ;
Wu, Tian ;
Wu, Xiangwei ;
He, Qiming .
JOURNAL OF POWER SOURCES, 2017, 340 :411-418
[4]   Decorating β"-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures [J].
Chang, Hee-Jung ;
Lu, Xiaochuan ;
Bonnett, Jeffery F. ;
Canfield, Nathan L. ;
Han, Keesung ;
Engelhard, Mark H. ;
Jung, Keeyoung ;
Sprenkle, Vincent L. ;
Li, Guosheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) :19703-19711
[5]   "Ni-Less" Cathodes for High Energy Density, Intermediate Temperature Na-NiCl2 Batteries [J].
Chang, Hee-Jung ;
Lu, Xiaochuan ;
Bonnett, Jeffery F. ;
Canfield, Nathan L. ;
Son, Sori ;
Park, Yoon-Cheol ;
Jung, Keeyoung ;
Sprenkle, Vincent L. ;
Li, Guosheng .
ADVANCED MATERIALS INTERFACES, 2018, 5 (10)
[6]   In-situ synthesis of porous metal fluoride@carbon composite via simultaneous etching/fluorination enabled superior Li storage performance [J].
Du, Kang ;
Tao, Runming ;
Guo, Chi ;
Li, Haifeng ;
Liu, Xiaolang ;
Guo, Pingmei ;
Wang, Deyu ;
Liang, Jiyuan ;
Li, Jianlin ;
Dai, Sheng ;
Sun, Xiao-Guang .
NANO ENERGY, 2022, 103
[7]   Advances in ZEBRA batteries [J].
Dustmann, CH .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :85-92
[8]   Monolithic Interphase Enables Fast Kinetics for High-Performance Sodium-Ion Batteries at Subzero Temperature [J].
Feng, Yi-Hu ;
Liu, Mengting ;
Wu, Junxiu ;
Yang, Chao ;
Liu, Qiang ;
Tang, Yongwei ;
Zhu, Xu ;
Wei, Guang-Xu ;
Dong, Haojie ;
Fan, Xin-Yu ;
Chen, Si-Fan ;
Hao, Wenyu ;
Yu, Lianzheng ;
Ji, Xiao ;
You, Ya ;
Wang, Peng-Fei ;
Lu, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (23)
[9]   An in-situ alloyed Ni-Fe Co-reaction electrode for high-stability and high-rate Na-metal halide batteries [J].
Gao, Xingpeng ;
Hu, Yingying ;
Zha, Wenping ;
Li, Yanpei ;
Wang, Jingyi ;
Lai, Hongjian ;
Wu, Xiangwei ;
Yang, Jianhua ;
Chen, Chunhua ;
Wen, Zhaoyin .
MATERIALS TODAY ENERGY, 2022, 23
[10]   High-Rate and Long-Life Intermediate-Temperature Na-NiCl2 Battery with Dual-Functional Ni-Carbon Composite Nanofiber Network [J].
Gao, Xingpeng ;
Hu, Yingying ;
Li, Yanpei ;
Wang, Jingyi ;
Wu, Xiangwei ;
Yang, Jianhua ;
Wen, Zhaoyin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) :24767-24776