Adaptive Safety Control for Constrained Uncertain Robotic Systems: A Neural Network-Based High-Order Control Barrier Function Approach

被引:0
|
作者
Peng, Jinzhu [1 ,2 ]
Ni, Zhiyao [1 ]
Wang, Haijing [1 ]
Yu, Hongshan [3 ]
Ding, Shuai [1 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] State Key Lab Intelligent Agr Power Equipment, Luoyang 471039, Henan, Peoples R China
[3] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Robotic systems; state constraints; high-order control barrier function; neural network; quadratic program;
D O I
10.1109/TCSII.2024.3404966
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, a neural network-based high-order control barrier function (NNHoCBF) is proposed to address the safety control problem of constrained uncertain robotic systems, where the radial basis function-based neural network is introduced to reconstruct uncertain robotic systems. By proving the non-negative nature of NNHoCBFs, Lyapunov-like conditions are obtained to ensure the constraint satisfaction of uncertain robotic systems. Moreover, to ensure the safe tracking control for constrained uncertain robotic systems, a minimum energy quadratic program (QP) with Lyapunov-like conditions is constructed as constraints on nominal control inputs, and the safe tracking controllers of robotic systems are then obtained by solving the minimum energy QP. Consequently, the safety and tracking performances of constrained uncertain robotic systems can be guaranteed simultaneously. Finally, simulation tests on a two-link robotic system are conducted to verify the effectiveness of the proposed controller.
引用
收藏
页码:4511 / 4515
页数:5
相关论文
共 50 条