Origin of Intrinsically Low Lattice Thermal Conductivity in Solids

被引:3
作者
Wu, Yu [1 ]
Huang, Anqi [2 ]
Ji, Linxuan [2 ]
Ji, Jialin [3 ]
Ding, Yimin [1 ]
Zhou, Liujiang [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys, State Key Lab Elect Thin Films Integrated Devices, Chengdu 611731, Peoples R China
[3] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH THERMOELECTRIC PERFORMANCE; LONE PAIRS; CRYSTALLINE; MODES; DISTORTION; TRANSPORT; FIGURE; COPPER; MERIT;
D O I
10.1021/acs.jpclett.4c02770
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reducing lattice thermal conductivity through external modulation techniques such as defect engineering may potentially interfere with electronic transport. Materials with intrinsically low lattice thermal conductivity have the potential to decouple the control of lattice heat transport and electronic transport, which is of great significance in the field of thermoelectric energy conversion. This paper reviews the origin of intrinsically low lattice thermal conductivity, which is directly related to three physical quantities (heat capacity, phonon group velocity, and phonon relaxation time) and is ultimately reflected in the lattice structure and bonding characteristics. An understanding of the fundamental nature of low lattice thermal conductivity can aid in guiding experimental design and theoretically enabling high-throughput prediction of novel low lattice thermal conductivity materials according to the intrinsic properties.
引用
收藏
页码:11525 / 11537
页数:13
相关论文
共 122 条
[11]   Strong Antibonding I (p)-Cu (d) States Lead to Intrinsically Low Thermal Conductivity in CuBiI4 [J].
Das, Anustoop ;
Pal, Koushik ;
Acharyya, Paribesh ;
Das, Subarna ;
Maji, Krishnendu ;
Biswas, Kanishka .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (02) :1349-1358
[12]  
Delaire O, 2011, NAT MATER, V10, P614, DOI [10.1038/NMAT3035, 10.1038/nmat3035]
[13]   Crossover from Boltzmann to Wigner thermal transport in thermoelectric skutterudites [J].
Di Lucente, Enrico ;
Simoncelli, Michele ;
Marzari, Nicola .
PHYSICAL REVIEW RESEARCH, 2023, 5 (03)
[14]   Efficacy of lone-pair electrons to engender ultralow thermal conductivity [J].
Du, Baoli ;
Chen, Kan ;
Yan, Haixue ;
Reece, Michael J. .
SCRIPTA MATERIALIA, 2016, 111 :49-53
[15]   Electronegative guests in CoSb3 [J].
Duan, Bo ;
Yang, Jiong ;
Salvador, James R. ;
He, Yang ;
Zhao, Bo ;
Wang, Shanyu ;
Wei, Ping ;
Ohuchi, Fumio S. ;
Zhang, Wenqing ;
Hermann, Raphael P. ;
Gourdon, Olivier ;
Mao, Scott X. ;
Cheng, Yingwen ;
Wang, Chongmin ;
Liu, Jun ;
Zhai, Pengcheng ;
Tang, Xinfeng ;
Zhang, Qingjie ;
Yang, Jihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2090-2098
[16]   Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler [J].
Dutta, Moinak ;
Samanta, Manisha ;
Ghosh, Tanmoy ;
Voneshen, David J. ;
Biswas, Kanishka .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (08) :4259-4265
[17]   Ultralow Thermal Conductivity in Chain-like TlSe Due to Inherent Tl+ Rattling [J].
Dutta, Moinak ;
Matteppanavar, Shidaling ;
Prasad, Matukumilli V. D. ;
Pandey, Juhi ;
Warankar, Avinash ;
Mandal, Pankaj ;
Soni, Ajay ;
Waghmare, Umesh V. ;
Biswas, Kanishka .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (51) :20293-20299
[18]   Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids [J].
Feng, Tianli ;
Lindsay, Lucas ;
Ruan, Xiulin .
PHYSICAL REVIEW B, 2017, 96 (16)
[19]   Characterization of rattling in relation to thermal conductivity: Ordered half-Heusler semiconductors [J].
Feng, Zhenzhen ;
Fu, Yuhao ;
Zhang, Yongsheng ;
Singh, David J. .
PHYSICAL REVIEW B, 2020, 101 (06)
[20]   Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics [J].
Ghosh, Tanmoy ;
Dutta, Moinak ;
Sarkar, Debattam ;
Biswas, Kanishka .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (23) :10099-10118