Strong Pairing Originated from an Emergent Z2 Berry Phase in La3Ni2O7

被引:12
作者
Zhang, Jia-Xin [1 ,2 ,3 ]
Zhang, Hao-Kai [1 ]
You, Yi-Zhuang [4 ]
Weng, Zheng-Yu [1 ]
机构
[1] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[2] French Amer Ctr Theoret Sci, CNRS, KITP, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[4] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
STRIPE ORDER; TRANSPORT;
D O I
10.1103/PhysRevLett.133.126501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent discovery of high-temperature superconductivity in La3Ni2O7 offers a fresh platform for exploring unconventional pairing mechanisms. Starting with the basic argument that the electrons in d(z)(2) orbitals nearly form local moments, we examine the effect of the Hubbard interaction U on the binding strength of Cooper pairs based on a single-orbital bilayer model with intralayer hopping t(parallel to) and interlayer superexchange J(perpendicular to). By extensive density matrix renormalization group calculations, we observe a remarkable enhancement in binding energy as much as 10-20 times larger with U/t(parallel to) increasing from 0 to 12 at J(perpendicular to)/t(parallel to) similar to 1. We demonstrate that such a substantial enhancement stems from a kinetic-energy-driven mechanism. Specifically, a Z(2) Berry phase will emerge at large U due to the Hilbert space restriction (Mottness), which strongly suppresses the mobility of single particle propagation as compared to U = 0. However, the kinetic energy of the electrons (holes) can be greatly restored by forming an interlayer spin-singlet pairing, which naturally results in a superconducting state even for relatively small J(perpendicular to). An effective hard-core bosonic model is further proposed to estimate the superconducting transition temperature at the mean-field level.
引用
收藏
页数:7
相关论文
共 67 条
[1]  
[Anonymous], Phys Rev Lett., V133, DOI [10.1103/PhysRevLett.133.126501, DOI 10.1103/PHYSREVLETT.133.126501]
[2]   Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators [J].
Bohrdt, Annabelle ;
Homeier, Lukas ;
Bloch, Immanuel ;
Demler, Eugene ;
Grusdt, Fabian .
NATURE PHYSICS, 2022, 18 (06) :651-+
[3]   Exploration of doped quantum magnets with ultracold atoms [J].
Bohrdt, Annabelle ;
Homeier, Lukas ;
Reinmoser, Christian ;
Demler, Eugene ;
Grusdt, Fabian .
ANNALS OF PHYSICS, 2021, 435
[4]  
Chen C, 2024, Arxiv, DOI [arXiv:2406.15553, arXiv:2406.15553]
[5]   Two-hole ground state wavefunction: Non-BCS pairing in a t-J two-leg ladder [J].
Chen, Shuai ;
Zhu, Zheng ;
Weng, Zheng-Yu .
PHYSICAL REVIEW B, 2018, 98 (24)
[6]   Ginzburg-Landau Theory of Flat-Band Superconductors with Quantum Metric [J].
Chen, Shuai A. ;
Law, K. T. .
PHYSICAL REVIEW LETTERS, 2024, 132 (02)
[7]   Correlated Electronic Structure of La3Ni2O7 under Pressure [J].
Christiansson, Viktor ;
Petocchi, Francesco ;
Werner, Philipp .
PHYSICAL REVIEW LETTERS, 2023, 131 (20)
[8]   Orbital-Selective Mott Transition out of Band Degeneracy Lifting [J].
de Medici, Luca ;
Hassan, S. R. ;
Capone, Massimo ;
Dai, Xi .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)
[9]   Selective Mott Physics as a Key to Iron Superconductors [J].
de' Medici, Luca ;
Giovannetti, Gianluca ;
Capone, Massimo .
PHYSICAL REVIEW LETTERS, 2014, 112 (17)
[10]   Colloquium: Theory of intertwined orders in high temperature superconductors [J].
Fradkin, Eduardo ;
Kivelson, Steven A. ;
Tranquada, John M. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :457-482