Atomic Norm Minimization-Based DoA Estimation for IRS-Assisted Sensing Systems

被引:0
|
作者
Li, Renwang [1 ,2 ]
Sun, Shu [1 ,2 ]
Tao, Meixia [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival estimation; Sensors; Estimation; Vectors; Covariance matrices; Multiple signal classification; Sparse matrices; Intelligent reflecting surface (IRS); direction-of-arrival (DoA) estimation; atomic norm minimization (ANM); Cram & eacute; r-Rao bound (CRB);
D O I
10.1109/LWC.2024.3437644
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent reflecting surface (IRS) is expected to play a pivotal role in future wireless sensing networks owing to its potential for high-resolution and high-accuracy sensing. In this letter, we investigate a multi-target direction-of-arrival (DoA) estimation problem in a semi-passive IRS-assisted sensing system, where IRS reflecting elements (REs) reflect signals from the base station to targets, and IRS sensing elements (SEs) estimate DoA based on echo signals reflected by the targets. First, instead of solely relying on IRS SEs for DoA estimation as done in the existing literature, this letter fully exploits the DoA information embedded in both IRS REs and SEs matrices via the atomic norm minimization (ANM) scheme. Subsequently, the Cram & eacute;r-Rao bound for DoA estimation is derived, revealing an inverse proportionality to MN3 + NM3 under the case of identity covariance matrix of the IRS measurement matrix and a single target, where M and N are the number of IRS SEs and REs, respectively. Finally, extensive numerical results substantiate the superior performance of the proposed method over representative baselines.
引用
收藏
页码:2672 / 2676
页数:5
相关论文
共 50 条
  • [21] Efficient gridless 2D DOA estimation based on generalized matrix-form atomic norm minimization
    Gao, Silin
    Wang, Muhan
    Zhang, Zhe
    Zhang, Bingchen
    Wu, Yirong
    ELECTRONICS LETTERS, 2024, 60 (10)
  • [22] Joint Channel Estimation Algorithm for IRS-Assisted Multi-User MIMO Systems
    Fang, Xingchen
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (02) : 367 - 371
  • [23] Semi-Blind Joint Channel and Symbol Estimation for IRS-Assisted MIMO Systems
    de Araujo, Gilderlan T.
    de Almeida, Andre L. F.
    Boyer, Remy
    Fodor, Gabor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1184 - 1199
  • [24] Nuclear norm minimization framework for DOA estimation in MIMO radar
    Wang, Xianpeng
    Wang, Luyun
    Li, Xiumei
    Bi, Guoan
    SIGNAL PROCESSING, 2017, 135 : 147 - 152
  • [25] Integrated Sensing and Communication in IRS-Assisted High-Mobility Systems: Design, Analysis, and Optimization
    Peng, Xingyu
    Tao, Qin
    Hu, Xiaoling
    Jin, Richeng
    Huang, Chongwen
    Chen, Xiaoming
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 16107 - 16122
  • [26] Bayesian Direction-of-Arrival Estimation Using Atomic Norm Minimization With Prior Knowledge
    Jia, Tianyi
    Liu, Hongwei
    Gao, Chang
    Yan, Junkun
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 5742 - 5755
  • [27] Power Measurement Enabled Channel Autocorrelation Matrix Estimation for IRS-Assisted Wireless Communication
    Yan, Ge
    Zhu, Lipeng
    Zhang, Rui
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2025, 24 (03) : 1832 - 1848
  • [28] Super-Resolution DoA Estimation on a Co-Prime Array via Positive Atomic Norm Minimization
    Chung, Hyeonjin
    Park, Young Mi
    Kim, Sunwoo
    ENERGIES, 2020, 13 (14)
  • [29] IRS-Assisted Secure Radar Communication Systems With Malicious Target
    Zhang, Huiying
    Zheng, Jianping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 591 - 604
  • [30] Structured OMP for IRS-Assisted Mmwave Channel Estimation by Exploiting Angular Spread
    You, You
    Zhang, Li
    Yang, Minhua
    Huang, Yongming
    You, Xiaohu
    Zhang, Chuan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (04) : 4444 - 4448