Superposition of soliton, breather and lump waves in a non-painlevé integrabale extension of the Boiti-Leon-Manna-Pempinelli equation

被引:3
作者
Asadi, Esmaeel [1 ,2 ]
Hosseini, Kamyar [3 ,4 ]
Madadi, Majid [1 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Math, Zanjan 4513766731, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Near East Univ TRNC, Dept Math, Mersin, Turkiye
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Painlev & eacute; analysis; Bell polynomial; Lax pair; & auml; cklund transformation; Pfaffian solution; soliton wave; Lump wave; BEHAVIOR;
D O I
10.1088/1402-4896/ad8f74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we derive general Nth-order Pfaffian solutions for a ( 3 + 1)-dimensional non-Painlev & eacute; integrable extension of the Boiti-Leon-Manna-Pempinelli ( BLMP ) equation. Specifcally, we obtain Nsoliton, higher-order breather, higher-order lump and hybrid solutions, and explore the superpositions of Y-shaped and X-shaped soliton-breather waves. Moreover, we construct bilinear B & auml;cklund transformations, Lax pairs, and conservation laws using Bell polynomials. Finally, we identify a similar equation in the literature and demonstrate that it represents another non-Painlev & eacute; integrable extension of the BLMP equation.
引用
收藏
页数:27
相关论文
共 54 条
[21]   Higher-order rogue wave solutions of the Kadomtsev Petviashvili-Benjanim Bona Mahony (KP-BBM) model via the Hirota-bilinear approach [J].
Hoque, Md Fazlul ;
Roshid, Harun-Or ;
Alshammari, Fahad Sameer .
PHYSICA SCRIPTA, 2020, 95 (11)
[22]   Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation [J].
Hosseini, K. ;
Mirzazadeh, M. ;
Aligoli, M. ;
Eslami, M. ;
Liu, J. G. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2020, 15
[23]   Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique [J].
Hu, Lei ;
Gao, Yi-Tian ;
Jia, Ting-Ting ;
Deng, Gao-Fu ;
Li, Liu-Qing .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02)
[24]   Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves [J].
Hua, Yan-Fei ;
Guo, Bo-Ling ;
Ma, Wen-Xiu ;
Lu, Xing .
APPLIED MATHEMATICAL MODELLING, 2019, 74 :184-198
[25]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[26]   Soliton solutions of BLMP equation by Lie symmetry approach [J].
Kumar, Mukesh ;
Tiwari, Atul Kumar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) :1434-1442
[27]   Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painleve analysis and multi-soliton solutions [J].
Kumar, Sachin ;
Mohan, Brij ;
Kumar, Amit .
PHYSICA SCRIPTA, 2022, 97 (03)
[28]   ON A DIRECT BILINEARIZATION METHOD - KAUP HIGHER-ORDER WATER-WAVE EQUATION AS A MODIFIED NONLOCAL BOUSSINESQ EQUATION [J].
LAMBERT, F ;
LORIS, I ;
SPRINGAEL, J ;
WILLOX, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (15) :5325-5334
[29]   Soliton resonances, soliton molecules to breathers, semi-elastic collisions and soliton bifurcation for a multi-component Maccari system in optical fiber [J].
Li, Bang-Qing ;
Wazwaz, Abdul-Majid ;
Ma, Yu-Lan .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
[30]  
Liu FY, 2023, EUR PHYS J PLUS, V138, DOI 10.1140/epjp/s13360-022-03574-x