Superposition of soliton, breather and lump waves in a non-painlevé integrabale extension of the Boiti-Leon-Manna-Pempinelli equation

被引:3
作者
Asadi, Esmaeel [1 ,2 ]
Hosseini, Kamyar [3 ,4 ]
Madadi, Majid [1 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Math, Zanjan 4513766731, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Near East Univ TRNC, Dept Math, Mersin, Turkiye
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Painlev & eacute; analysis; Bell polynomial; Lax pair; & auml; cklund transformation; Pfaffian solution; soliton wave; Lump wave; BEHAVIOR;
D O I
10.1088/1402-4896/ad8f74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we derive general Nth-order Pfaffian solutions for a ( 3 + 1)-dimensional non-Painlev & eacute; integrable extension of the Boiti-Leon-Manna-Pempinelli ( BLMP ) equation. Specifcally, we obtain Nsoliton, higher-order breather, higher-order lump and hybrid solutions, and explore the superpositions of Y-shaped and X-shaped soliton-breather waves. Moreover, we construct bilinear B & auml;cklund transformations, Lax pairs, and conservation laws using Bell polynomials. Finally, we identify a similar equation in the literature and demonstrate that it represents another non-Painlev & eacute; integrable extension of the BLMP equation.
引用
收藏
页数:27
相关论文
共 54 条
[1]   Soliton interactions in the vector NLS equation [J].
Ablowitz, MJ ;
Prinari, B ;
Trubatch, AD .
INVERSE PROBLEMS, 2004, 20 (04) :1217-1237
[2]  
Akhmediev N N, 1997, Nonlinear pulses and beams, V88, P23
[3]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[4]  
Bogoyavlenskii O., 1990, MATH USSR IZV+, V34, P245, DOI DOI 10.1070/IM1990V034N02ABEH000628
[5]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[6]   Spontaneous symmetry breaking in Schrodinger lattices with two nonlinear sites [J].
Brazhnyi, Valeriy A. ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2011, 83 (05)
[7]   Complexitons, Bilinear forms and Bilinear Backlund transformation of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli model describing incompressible fluid [J].
Butt, Asma Rashid ;
Raza, Nauman ;
Inc, Mustafa ;
Alqahtani, Rubayyi T. .
CHAOS SOLITONS & FRACTALS, 2023, 168
[8]   Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) :525-534
[9]   Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations [J].
Chen, Si-Jia ;
Lu, Xing ;
Li, Meng-Gang ;
Wang, Fang .
PHYSICA SCRIPTA, 2021, 96 (09)
[10]   Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma [J].
Cheng, Chong-Dong ;
Tian, Bo ;
Zhou, Tian-Yu ;
Shen, Yuan .
PHYSICS OF FLUIDS, 2023, 35 (03)